Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (5): 182-192.DOI: 10.13304/j.nykjdb.2023.0863
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles Next Articles
Chunlin MIAO1(), Huanhuan XU1, Ziyi JIA1, Aimin HE2,3, Yangyang JI2,3, Dehua MOU3, Shan GAO1(
)
Received:
2023-11-24
Accepted:
2024-03-04
Online:
2025-05-15
Published:
2025-05-20
Contact:
Shan GAO
苗春霖1(), 许欢欢1, 贾紫毅1, 何爱民2,3, 吉洋洋2,3, 牟德华3, 高山1(
)
通讯作者:
高山
作者简介:
苗春霖E-mail:1120012984@qq.com;
CLC Number:
Chunlin MIAO, Huanhuan XU, Ziyi JIA, Aimin HE, Yangyang JI, Dehua MOU, Shan GAO. Oxidation Resistance Analysis and Component Identification of Distracted Wood Water Extracts[J]. Journal of Agricultural Science and Technology, 2025, 27(5): 182-192.
苗春霖, 许欢欢, 贾紫毅, 何爱民, 吉洋洋, 牟德华, 高山. 分心木水提物的抗氧化性分析及组分鉴定[J]. 中国农业科技导报, 2025, 27(5): 182-192.
水平Level | A:超声时间 Ultrasound time/min | B:超声温度 Ultrasonic temperature/℃ | C:液料比 Liquid-to-material ratio/(mL·g-1) |
---|---|---|---|
-1 | 10 | 50 | 80∶1 |
0 | 20 | 60 | 90∶1 |
1 | 30 | 70 | 100∶1 |
Table 1 Experimental factors and level table of DJF-water extract response surface
水平Level | A:超声时间 Ultrasound time/min | B:超声温度 Ultrasonic temperature/℃ | C:液料比 Liquid-to-material ratio/(mL·g-1) |
---|---|---|---|
-1 | 10 | 50 | 80∶1 |
0 | 20 | 60 | 90∶1 |
1 | 30 | 70 | 100∶1 |
化合物 | 时间 Time/min | 乙腈 Acetonitrile/% |
---|---|---|
多酚 Polyphenol | 0~2 | 5~15 |
2~5 | 15~20 | |
5~20 | 20 | |
20~24 | 20~50 | |
24~26 | 50~100 | |
26~28 | 100~50 | |
28~30 | 50~20 | |
30~40 | 20~5 | |
多糖 Polysaccharide | 0~28 | 17 |
28~40 | 17~30 | |
40~45 | 30 | |
45 | 30~17 | |
45~50 | 17 |
Table 2 Mobile phase gradients
化合物 | 时间 Time/min | 乙腈 Acetonitrile/% |
---|---|---|
多酚 Polyphenol | 0~2 | 5~15 |
2~5 | 15~20 | |
5~20 | 20 | |
20~24 | 20~50 | |
24~26 | 50~100 | |
26~28 | 100~50 | |
28~30 | 50~20 | |
30~40 | 20~5 | |
多糖 Polysaccharide | 0~28 | 17 |
28~40 | 17~30 | |
40~45 | 30 | |
45 | 30~17 | |
45~50 | 17 |
编号 Number | 因素Factor | DPPH清除率 DPPH clearance/% | ||
---|---|---|---|---|
A:超声时间 Ultrasonic time/min | B:超声温度 Ultrasonic temperature/℃ | C:液料比 Liquid-to-material ratio/(mL·g-1) | ||
1 | 10 | 50 | 90∶1 | 60.45 |
2 | 20 | 50 | 90∶1 | 62.83 |
3 | 10 | 70 | 90∶1 | 62.30 |
4 | 30 | 70 | 90∶1 | 52.13 |
5 | 10 | 60 | 80∶1 | 62.26 |
6 | 30 | 60 | 80∶1 | 59.90 |
7 | 10 | 60 | 80∶1 | 65.73 |
8 | 30 | 60 | 100∶1 | 63.85 |
9 | 20 | 50 | 80∶1 | 60.20 |
10 | 20 | 70 | 80∶1 | 53.82 |
11 | 20 | 50 | 100∶1 | 65.60 |
12 | 20 | 70 | 100∶1 | 55.19 |
13 | 20 | 60 | 90∶1 | 71.48 |
14 | 20 | 60 | 90∶1 | 71.81 |
15 | 20 | 60 | 90∶1 | 73.30 |
16 | 20 | 60 | 90∶1 | 71.83 |
17 | 20 | 60 | 90∶1 | 71.05 |
Table 3 Experimental design and results of DJF water extract response surface
编号 Number | 因素Factor | DPPH清除率 DPPH clearance/% | ||
---|---|---|---|---|
A:超声时间 Ultrasonic time/min | B:超声温度 Ultrasonic temperature/℃ | C:液料比 Liquid-to-material ratio/(mL·g-1) | ||
1 | 10 | 50 | 90∶1 | 60.45 |
2 | 20 | 50 | 90∶1 | 62.83 |
3 | 10 | 70 | 90∶1 | 62.30 |
4 | 30 | 70 | 90∶1 | 52.13 |
5 | 10 | 60 | 80∶1 | 62.26 |
6 | 30 | 60 | 80∶1 | 59.90 |
7 | 10 | 60 | 80∶1 | 65.73 |
8 | 30 | 60 | 100∶1 | 63.85 |
9 | 20 | 50 | 80∶1 | 60.20 |
10 | 20 | 70 | 80∶1 | 53.82 |
11 | 20 | 50 | 100∶1 | 65.60 |
12 | 20 | 70 | 100∶1 | 55.19 |
13 | 20 | 60 | 90∶1 | 71.48 |
14 | 20 | 60 | 90∶1 | 71.81 |
15 | 20 | 60 | 90∶1 | 73.30 |
16 | 20 | 60 | 90∶1 | 71.83 |
17 | 20 | 60 | 90∶1 | 71.05 |
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 679.00 | 9 | 75.56 | 42.76 | <0.000 1 |
A:超声时间 Ultrasound time | 18.07 | 1 | 18.07 | 10.23 | 0.015 1* |
B:超声温度 Ultrasonic temperature | 82.27 | 1 | 82.27 | 46.56 | 0.000 2* |
C:液料比 Liquid-to-materialratio | 25.16 | 1 | 25.16 | 14.24 | 0.007 0** |
AB | 39.33 | 1 | 39.33 | 22.26 | 0.002 2 |
AC | 0.06 | 1 | 0.06 | 0.03 | 0.864 0 |
BC | 4.08 | 1 | 4.08 | 2.31 | 0.172 5 |
A2 | 71.36 | 1 | 71.36 | 40.39 | 0.000 4 |
B2 | 293.59 | 1 | 293.59 | 166.16 | <0.000 1 |
C2 | 98.77 | 1 | 98.77 | 55.90 | 0.000 1 |
残差Residuals | 12.37 | 7 | 1.77 | ||
失拟误差Misfit error | 9.50 | 3 | 3.17 | 4.41 | 0.092 9 |
纯误差Pure error | 2.87 | 4 | 0.72 | ||
总和Sum | 692.37 | 16 |
Table 4 Analysis of variance for DJF water extract fitting quadratic polynomial model
方差来源 Source of variance | 平方和 Sum of squares | 自由度 Degree of freedom | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
模型 Model | 679.00 | 9 | 75.56 | 42.76 | <0.000 1 |
A:超声时间 Ultrasound time | 18.07 | 1 | 18.07 | 10.23 | 0.015 1* |
B:超声温度 Ultrasonic temperature | 82.27 | 1 | 82.27 | 46.56 | 0.000 2* |
C:液料比 Liquid-to-materialratio | 25.16 | 1 | 25.16 | 14.24 | 0.007 0** |
AB | 39.33 | 1 | 39.33 | 22.26 | 0.002 2 |
AC | 0.06 | 1 | 0.06 | 0.03 | 0.864 0 |
BC | 4.08 | 1 | 4.08 | 2.31 | 0.172 5 |
A2 | 71.36 | 1 | 71.36 | 40.39 | 0.000 4 |
B2 | 293.59 | 1 | 293.59 | 166.16 | <0.000 1 |
C2 | 98.77 | 1 | 98.77 | 55.90 | 0.000 1 |
残差Residuals | 12.37 | 7 | 1.77 | ||
失拟误差Misfit error | 9.50 | 3 | 3.17 | 4.41 | 0.092 9 |
纯误差Pure error | 2.87 | 4 | 0.72 | ||
总和Sum | 692.37 | 16 |
标品 Standard product | 线性回归方程 Linear regression equation | 决定系数 R2 |
---|---|---|
没食子酸Gallic acid | y=3 676 602.5x+12 429 215.1 | 0.999 2 |
绿原酸Chlorogenic acid | y=9 780 671.5x+25 070.5 | 0.999 5 |
儿茶素Catechins | y=18 976 942.0x-1 578 523.2 | 0.999 8 |
芦丁Rutin | y=8 195 692.0x-242 787.6 | 0.999 3 |
槲皮素Quercetin | y=5 324 594.0x+1 967 979.0 | 0.999 3 |
甘露糖Mannose | y=19 806.7+14 563 801.1x | 0.999 9 |
半乳糖Galactose | y=-7 354.5+11 882 050.3x | 0.999 8 |
葡萄糖Glucose | y=48 476.0+17 936 410.2x | 0.999 9 |
阿拉伯糖Arabinose | y=203 770.4+23 019 451.9x | 0.999 8 |
Table 5 Linear regression equations and correlation coefficients for standards
标品 Standard product | 线性回归方程 Linear regression equation | 决定系数 R2 |
---|---|---|
没食子酸Gallic acid | y=3 676 602.5x+12 429 215.1 | 0.999 2 |
绿原酸Chlorogenic acid | y=9 780 671.5x+25 070.5 | 0.999 5 |
儿茶素Catechins | y=18 976 942.0x-1 578 523.2 | 0.999 8 |
芦丁Rutin | y=8 195 692.0x-242 787.6 | 0.999 3 |
槲皮素Quercetin | y=5 324 594.0x+1 967 979.0 | 0.999 3 |
甘露糖Mannose | y=19 806.7+14 563 801.1x | 0.999 9 |
半乳糖Galactose | y=-7 354.5+11 882 050.3x | 0.999 8 |
葡萄糖Glucose | y=48 476.0+17 936 410.2x | 0.999 9 |
阿拉伯糖Arabinose | y=203 770.4+23 019 451.9x | 0.999 8 |
标品 Standard product | 加标量 Amount of spike/(mg·mL-1) | 回收率 Recovery rate/% | 相对标准偏差 RSD/% |
---|---|---|---|
没食子酸 Gallic acid | 0.25 | 86.30 | 0.78 |
绿原酸 Chlorogenic acid | 0.25 | 88.90 | 1.27 |
儿茶素 Catechins | 0.50 | 90.10 | 0.39 |
芦丁 Rutin | 0.25 | 84.50 | 0.89 |
槲皮素 Quercetin | 0.13 | 83.70 | 0.54 |
甘露糖 Mannose | 0.25 | 89.76 | 0.65 |
半乳糖 Galactose | 0.25 | 92.45 | 0.32 |
葡萄糖 Glucose | 0.25 | 89.95 | 0.24 |
阿拉伯糖 Arabinose | 0.25 | 91.87 | 0.41 |
Table 6 Recovery results for spikes
标品 Standard product | 加标量 Amount of spike/(mg·mL-1) | 回收率 Recovery rate/% | 相对标准偏差 RSD/% |
---|---|---|---|
没食子酸 Gallic acid | 0.25 | 86.30 | 0.78 |
绿原酸 Chlorogenic acid | 0.25 | 88.90 | 1.27 |
儿茶素 Catechins | 0.50 | 90.10 | 0.39 |
芦丁 Rutin | 0.25 | 84.50 | 0.89 |
槲皮素 Quercetin | 0.13 | 83.70 | 0.54 |
甘露糖 Mannose | 0.25 | 89.76 | 0.65 |
半乳糖 Galactose | 0.25 | 92.45 | 0.32 |
葡萄糖 Glucose | 0.25 | 89.95 | 0.24 |
阿拉伯糖 Arabinose | 0.25 | 91.87 | 0.41 |
1 | LIU R X, ZHAO Z Y, DAI S J,et al.. Identification and quantification of bioactive compounds in Diaphragma juglandis fructus by UHPLC-Q-orbitrap HRMS and UHPLC-MS/MS [J]. J. Agric. Food Chem.,2019,67(13):3811-3825. |
2 | CHEN Y, SUN X Q, FANG L T,et al.. Optimization of ultrasound-assisted extraction of polyphenols from Ilex latifolia using response surface methodology and evaluation of their antioxidant activity [J/OL]. Molecules, 2022,27(13):3999 [2023-10-23]. . |
3 | MENG Q R, WANG Y Q, CHEN F,et al..Polysaccharides from Diaphragma juglandis fructus:extraction optimization,antitumor,and immune-enhancement effects [J].Int.J.Biol.Macromol.,2018,115:835-845. |
4 | 洪茜茜,叶永丽,张银志,等.核桃分心木化学成分及功能活性研究进展[J].食品研究与开发,2021,42(7):194-202. |
HONG Q Q, YE Y L, ZHANG Y Z, et al.. Research progress on chemical constituents and functional activities of Diaphragma juglandis fructus [J]. Food Res.Dev.,2021,42(7):194-202. | |
5 | WEI N, WANG X S, WU Y Y, et al.. Comparative study on anti-inflammatory effect of polysaccharides from vinegar-baked Radix bupleuri using different methods [J].ACS Omega,2023,8(32):29253-29261. |
6 | HUANG X, LI S, DING R,et al.. Antitumor effects of polysaccharides from medicinal lower plants:a review [J/OL].Int. J. Biol. Macromol., 2023,252:126313 [2023-10-23].. |
7 | YAMAGUCHI T, YASUI K, FUJII S,et al.. Lentilactobacillus hilgardii H-50 strongly inhibits lipopolysaccharide-induced inflammatory responses in mouse splenocytes via its specific surface layer proteins [J/OL].J.Appl.Microbiol.,2023,134(3):lxad021 [2023-10-23].. |
8 | 蒋红芝,覃微,李海冬.核桃分心木单宁提取及其对羊毛的染色工艺[J].毛纺科技,2022,50(7):31-36. |
JIANG H Z, QIN W, LI H D. Study on extraction technology of tannin and dyeing technology of wool from walnut-wood [J].Wool Text. J.,2022,50(7):31-36. | |
9 | WANG S, WU H, ZHANG X,et al.. Preparation of nano-selenium from chestnut polysaccharide and characterization of its antioxidant activity [J/OL].Front. Nutr.,2022,9:1054601[2023-10-23]. . |
10 | 刘昕茹. 荞麦麸皮多酚的强化提取及其复合物的性质研究[D]. 天津:天津科技大学, 2022. |
LIU X R. Study on the intensified extraction of polyphenols from buckwheat bran and properties of their complex [D]. Tianjin: Tianjin University of Science and Technology, 2022. | |
11 | 熊芳芳,马佳琪,李敏.猴头菇菌渣中多糖提取工艺的优化及其体外抗氧化活性研究[J].饲料研究,2023,46(18):92-96. |
XIONG F F, MA J Q, LI M.Study on optimization of extraction process of polysaccharide from Hericium erinaceus residues and in vitro antioxidant activity [J]. Feed Res.,2023,46(18):92-96. | |
12 | 陈肖,曾维艳,王翔,等.草果中不同多酚类体外抗氧化活性研究[J].食品与发酵科技,2023,59(3):43-46, 75. |
CHEN X, ZENG W Y, WANG X, et al.. Study on in vitro antioxidant activities of polyphenols from Amomum tsaoko [J].Food Ferment. Sci. Technol., 2023,59(3):43-46, 75. | |
13 | 辛二娜. 黄粉虫抗氧化多糖的制备、纯化、分离及组成和活性研究[D]. 晋中:山西农业大学, 2022. |
XIN E N. Studies on the preparation,purification,isolation,composition and activity of the antioxidant Tenebrio molitor polysaccharide [D]. Jinzhong:Shanxi Agricultural University, 2022. | |
14 | MIAO J N, SHI W, ZHANG J Q,et al.. Response surface methodology for the fermentation of polysaccharides from Auricularia auricula using Trichoderma viride and their antioxidant activities [J].Int.J.Biol.Macromol.,2020,155:393-402. |
15 | 冯李院,侯洪波,邢江艳,等.响应面微波辅助酸法优化提取南瓜皮果胶工艺研究[J].包装与食品机械,2023,41(4):39-45. |
FENG L Y, HOU H B, XING J Y, et al.. Study on optimized extraction of pectin from pumpkin peel by response surface combined with microwave-assisted acid method [J].Packag.Food Mach., 2023,41(4):39-45. | |
16 | 张红娇. 紫苏多糖的分离纯化、结构表征及应用研究[D]. 太原:中北大学, 2022. |
ZHANG H J. Isolation, purification, structural characterization and application of perilla polysaccharides [D]. Taiyuan:North University of China, 2022. | |
17 | 张韬,陈启航,韦海秋,等.加拿大一枝黄花多糖提取工艺优化及抗氧化活性研究[J].浙江海洋大学学报(自然科学版),2022,41(3):272-278. |
ZHANG T, CHEN Q H, WEI H Q, et al.. Study on extraction process and antioxidant activity of Solidago canadensis L. [J]. J.Zhejiang Ocean. Univ. (Nat.Sci.), 2022,41(3):272-278. | |
18 | GAO J Y, HU D Y, SHEN Y, et al.. Optimization of ultrasonic-assisted polysaccharide extraction from Hyperici Perforati Herba using response surface methodology and assessment of its antioxidant activity [J]. Int. J. Biol. Macromol., 2023,225:255-265. |
19 | ZHENG J W, ZHANG X X, HERRERA-BALANDRANO D D, et al.. Extraction optimization of Arctium lappa L. polysaccharides by box-behnken response surface design and their antioxidant capacity [J/OL]. Starch-Stärke, 2022,74(9-10):2100305 [2023-10-23]. . |
20 | LIU J, BAI J, SHAO C,et al.. Optimization of ultrasound-assisted aqueous two-phase extraction of polysaccharides from seabuckthorn fruits using response methodology,physicochemical characterization and bioactivities [J]. J. Sci. Food Agric.,2023,103(6):3168-3183. |
21 | 李湘,文瑶.响应面法优化荞麦花黄酮提取工艺研究[J].云南化工,2023,50(8):38-41. |
LI X, WEN Y.Response surface methodology to optimize the extraction process of buckwheat flower flavonoids [J].Yunnan Chem. Technol.,2023,50(8):38-41. | |
22 | CHEN X Q, JIA X D, YANG S, et al.. Optimization of ultrasonic-assisted extraction of flavonoids,polysaccharides,and eleutherosides from Acanthopanax senticosus using response surface methodology in development of health wine [J/OL]. LWT, 2022,165:113725 [2023-10-23]. . |
23 | BU X Y, XU Y Q, ZHAO M M, et al.. Simultaneous extraction of polysaccharides and polyphenols from blackcurrant fruits:comparison between response surface methodology and artificial neural networks [J/OL]. Ind. Crops Prod., 2021,170:113682 [2023-10-23]. . |
24 | ZHANG H, LI H, ZHANG Z, et al.. Optimization of ultrasound-assisted extraction of polysaccharides from perilla seed meal by response surface methodology:characterization and in vitro antioxidant activities [J]. J. Food Sci., 2021,86(2):306-318. |
25 | 刘佳, 周亚梅, 张潇丹, 等. 响应面法优化牛膝多糖的微波法提取工艺研究[J]. 农产品加工, 2023(7): 27-31. |
LIU J, ZHOU Y M, ZHANG X D, et al.. Optmization of ultrasound-assisted extraction of tricholomamatsutake mycelium polysaccharide using response surface methology [J]. Agric. Prod. Process., 2023(7): 27-31. | |
26 | FENG Y N, ZHANG X F. Polysaccharide extracted from Huperzia serrata using response surface methodology and its biological activity [J]. Int. J. Biol. Macromol.,2020,157:267-275. |
27 | 侯登勇,张建,何颖,等.核桃分心木水提物抗疲劳作用研究[J].中国食物与营养,2021,27(9):73-77. |
HOU D Y, ZHANG J, HE Y,et al.. Anti-fatigue activity study of aqueous extract from diaphragma juglandis fructus in walnut [J].Food Nutr. China,2021,27(9):73-77. | |
28 | 吴修利,徐雷,谢英,等.超声波辅助提取油莎豆粕水溶性多糖及其抗氧化性[J].食品研究与开发,2022,43(16):81-87. |
WU X L, XU L, XIE Y,et al..Ultrasonic-assisted extraction and antioxidant activity of water-soluble polysaccharides from Cyperus esculentus meals [J]. Food Res. Dev.,2022,43(16):81-87. | |
29 | ZHANG X X, NI Z J, ZHANG F, et al.. Physicochemical and antioxidant properties of Lycium barbarum seed dreg polysaccharides prepared by continuous extraction [J/OL].Food Chem., 2022,14:100282 [2023-10-23]. . |
30 | MEDLEJ M K, CHERRI B, NASSER G, et al.. Optimization of polysaccharides extraction from a wild species of Ornithogalum combining ultrasound and maceration and their anti-oxidant properties [J]. Int. J. Biol. Macromol., 2020,161:958-968. |
[1] | Shuoshuo FU, Weiyong GONG, Yixuan LIN, Yuanshun LI, Chengcan LIU, Lin NI. Optimization of Extraction Technology and Antifungal Activity of Total Diterpene from Fokienia Hodginsii [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 146-155. |
[2] | Taotao MAO, Xiaoqiang ZHAO, Xiaodong BAI, Bin YU. Effect of Low Temperature Stress on Photosynthetic Performance, Antioxidant Enzyme System and Related Gene Expression in Maize Seedlings [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 49-60. |
[3] | Changlong FENG, Chenyang NING, Yixin ZHU, Shuping LI, Chunguang HUANG. Research on Design and Optimization of Ring Winding Mechanism for Trunk Bandages [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 122-132. |
[4] | Jincheng LUO, Xiaolin ZHU, Xiaohong WEI, Xian WANG, Baoqiang WANG, Xuefen DU. Effect of Exogenous NO on Expression of Tomato Antioxidant Enzyme Gene Under Tomato Yellowing Leaf Curl Virus Stress [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 125-135. |
[5] | Ruyan ZHANG, Shenhao LI, Qipeng ZHU, Taigang FENG, Hongbo LI, Zebing XING, Yu XIAN. Effect of Biochar Content on Physical and Mechanical Properties of Garden Greening Waste/polylactic Acid Composites [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 192-200. |
[6] | Changlong FENG, Chunguang HUANG, Chenyang NING, Shuping LI, Kejin CHEN. Optimization of Performance and Characteristics of Spiral Drill Bit Excavation Mechanism for Planting Machine [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 89-98. |
[7] | Xue WANG, Xing ZHENG, Jiamiao REN, Yazhou ZHAO, Wenjun PENG. Optimization of Extraction Conditions for Volatile Components in Jujube Honey Based on Plackett-Burman Design and Response Surface Method [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 181-192. |
[8] | Jingyi XI, Shuangqing WANG, Yitong BAI, Xiuli YAO, Bixuan HUANG, Qingyi LI, Liqing FAN, Shichen HUANG, Mingguo SUN. Study on Optimization of Processing Parameters Using Hermetia illucens Larva to Treat Food Waste by Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 241-249. |
[9] | Lijun FU, Xiaoyu LIN, Jianhua LIN, Huinan SHEN, Yongzhen WU. Research on Processing Technology and Shelf Life of Red Matsutake Beef Sauce [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 148-158. |
[10] | Lanxiong ZHANG, Wei ZHENG, Yuan’an CHEN, Jing SHEN, Shuangquan ZOU, Jianrong WU, Lin NI. Study on Extraction Process and Antibacterial Activity of Lignans from Cinnamomum camphora Leaves [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 138-147. |
[11] | Meng LIU, Chenyi LIN, Rui WU, Shuang CAO, Zhihao LIANG, Ruonan ZHANG. Heat Stress Response and Comprehensive Evaluation of Heat Resistance of Lentinula edodes Mycelia [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 90-100. |
[12] | Dongling LIU, Hao SI, Baojiang ZHENG, Yuhong ZHANG. Optimization of Enzyme Assisted-ultrasonic Extraction of Sinigrin in Thlaspi arvense Seeds by Response Surface Methodology [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 225-233. |
[13] | Lei JI, Hongyan LI, Ying WANG, Xiaodong JIANG, Tianhong LIU, Xiao LI, Yuanqin SUN, Hongjun LIU. Optimization of Processing Technology and Analysis of Aroma Components of Tomato Flavored Puffed Shrimp Slices [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 140-153. |
[14] | Yingxuan JIA, Shulin ZHANG, Dajuan ZHANG, Wei DAI, Xiangdong BI. Effects of Phosphorus Recovery on Photosynthetic Pigments and Some Antioxidant Enzymes Activities of Phosphorus Starved Microcystis aeruginosa [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 70-77. |
[15] | Daigui GUO, Yulan LIAO, Xihui ZHANG, Chengyu YUAN, Zhongye WU. Parameter Optimization and Experiment of Cassava Planter [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 122-130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||