Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (8): 168-178.DOI: 10.13304/j.nykjdb.2024.0037
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Hang CAO1(), Xinbing YANG1(
), Yanlin LIU2,3, Na HUO1, Xiaokuan LIU4, Xinyue LI4
Received:
2023-12-06
Accepted:
2024-03-28
Online:
2025-08-15
Published:
2025-08-26
Contact:
Xinbing YANG
曹航1(), 杨新兵1(
), 刘彦林2,3, 霍娜1, 刘小宽4, 李新月4
通讯作者:
杨新兵
作者简介:
曹航 E-mail:1822679459@qq.com.
基金资助:
CLC Number:
Hang CAO, Xinbing YANG, Yanlin LIU, Na HUO, Xiaokuan LIU, Xinyue LI. Physicochemical Properties and Enzyme Activities of Reconstituted Soils from Limestone Mines[J]. Journal of Agricultural Science and Technology, 2025, 27(8): 168-178.
曹航, 杨新兵, 刘彦林, 霍娜, 刘小宽, 李新月. 石灰岩矿山重构土理化性质及酶活性变化[J]. 中国农业科技导报, 2025, 27(8): 168-178.
Fig. 1 Bulk density of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
Fig. 2 Porosity of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
Fig. 3 Water holding capacity of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
Fig. 5 Organic carbon content of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
Fig. 5 Total nutrient content of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
Fig. 6 Available nutrient content of different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
Fig. 7 Characteristics of enzyme activity in different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
Fig. 8 Characteristics of enzyme activity in different reconstructed soilsNote:Different small letters indicate significant differences between different treatments at P<0.05 level.
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase enzyme | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
容重Bulk density | -0.494 | -0.781* | -0.754* | -0.473 | -0.654* | 0.081 |
毛管孔隙度Capillary porosity | 0.761* | 0.951* | 0.842* | 0.593* | 0.894* | -0.102 |
非毛管孔隙度Noncapillary porosity | -0.685* | -0.821* | -0.813* | -0.672* | -0.682* | 0.121 |
总孔隙度Total porosity | 0.753* | 0.954* | 0.824* | 0.573* | 0.904* | -0.101 |
自然含水量Water content | 0.762* | 0.933* | 0.841* | 0.602* | 0.872* | -0.131 |
最大持水量Maximum moisture capacity | 0.731* | 0.932* | 0.830* | 0.581* | 0.842* | -0.14 |
毛管持水量Capillary capacity | 0.722* | 0.931* | 0.823* | 0.561* | 0.831* | -0.132 |
田间持水量Field capacity | 0.732* | 0.930* | 0.851* | 0.571* | 0.862* | -0.091 |
Table 1 Correlation between soil enzyme activity and physical properties
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase enzyme | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
容重Bulk density | -0.494 | -0.781* | -0.754* | -0.473 | -0.654* | 0.081 |
毛管孔隙度Capillary porosity | 0.761* | 0.951* | 0.842* | 0.593* | 0.894* | -0.102 |
非毛管孔隙度Noncapillary porosity | -0.685* | -0.821* | -0.813* | -0.672* | -0.682* | 0.121 |
总孔隙度Total porosity | 0.753* | 0.954* | 0.824* | 0.573* | 0.904* | -0.101 |
自然含水量Water content | 0.762* | 0.933* | 0.841* | 0.602* | 0.872* | -0.131 |
最大持水量Maximum moisture capacity | 0.731* | 0.932* | 0.830* | 0.581* | 0.842* | -0.14 |
毛管持水量Capillary capacity | 0.722* | 0.931* | 0.823* | 0.561* | 0.831* | -0.132 |
田间持水量Field capacity | 0.732* | 0.930* | 0.851* | 0.571* | 0.862* | -0.091 |
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
全氮Total nitrogen | 0.401 | 0.500 | 0.632 | 0.342 | 0.381 | 0.193 |
全磷Total phosphorus | 0.642* | 0.820* | 0.701* | 0.732* | 0.700* | -0.151 |
全钾Total potassium | 0.691* | 0.912* | 0.833* | 0.690* | 0.794* | -0.112 |
碱解氮Alkaline hydrolysis nitrogen | 0.721* | 0.774* | 0.731* | 0.562 | 0.711* | 0.044 |
有效磷Available phosphorus | 0.671* | 0.801* | 0.703* | 0.881* | 0.701* | -0.11 |
速效钾Rapidly available potassium | 0.483 | 0.711* | 0.682* | 0.403 | 0.582* | -0.151 |
有机碳Organic carbon | 0.632* | 0.630* | 0.672* | 0.401 | 0.602* | -0.171 |
pH | -0.421 | -0.682* | -0.511* | -0.530* | -0.474 | 0.293 |
Table 2 Correlation between soil enzyme activity and chemical propertie
指标Index | 碱性磷酸酶Alkaline phosphatase | 脲酶Urease | 蔗糖酶Sucrase | 过氧化氢酶Catalase | 多酚氧化酶Polyphenol oxidase | 脱氢酶Dehydrogenase |
---|---|---|---|---|---|---|
全氮Total nitrogen | 0.401 | 0.500 | 0.632 | 0.342 | 0.381 | 0.193 |
全磷Total phosphorus | 0.642* | 0.820* | 0.701* | 0.732* | 0.700* | -0.151 |
全钾Total potassium | 0.691* | 0.912* | 0.833* | 0.690* | 0.794* | -0.112 |
碱解氮Alkaline hydrolysis nitrogen | 0.721* | 0.774* | 0.731* | 0.562 | 0.711* | 0.044 |
有效磷Available phosphorus | 0.671* | 0.801* | 0.703* | 0.881* | 0.701* | -0.11 |
速效钾Rapidly available potassium | 0.483 | 0.711* | 0.682* | 0.403 | 0.582* | -0.151 |
有机碳Organic carbon | 0.632* | 0.630* | 0.672* | 0.401 | 0.602* | -0.171 |
pH | -0.421 | -0.682* | -0.511* | -0.530* | -0.474 | 0.293 |
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
容重Bulk density | 0.47 | 0.85 | 0.55 | 0.52 | 0.49 |
毛管孔隙度Capillary porosity | 0.81 | 0.97 | 0.94 | 0.86 | 0.95 |
非毛管孔隙度Noncapillary porosity | 0.40 | 0.81 | 0.49 | 0.51 | 0.39 |
总孔隙度Total porosity | 0.92 | 0.97 | 0.87 | 0.94 | 0.91 |
自然含水量Water content | 0.78 | 0.98 | 0.91 | 0.87 | 0.91 |
最大持水量Maximum moisture capacity | 0.62 | 0.93 | 0.94 | 0.75 | 0.80 |
毛管持水量Capillary capacity | 0.56 | 0.86 | 0.88 | 0.70 | 0.75 |
田间持水量Field capacity | 0.56 | 0.89 | 0.80 | 0.63 | 0.69 |
全氮Total nitrogen | 0.62 | 0.68 | 0.68 | 0.75 | 0.69 |
全磷Total phosphorus | 0.71 | 0.94 | 0.71 | 0.79 | 0.78 |
全钾Total potassium | 0.50 | 0.83 | 0.80 | 0.84 | 0.55 |
Table 3 Grey correlation coefficients of physical and chemical properties and enzyme activities of different reconstructed soils
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
容重Bulk density | 0.47 | 0.85 | 0.55 | 0.52 | 0.49 |
毛管孔隙度Capillary porosity | 0.81 | 0.97 | 0.94 | 0.86 | 0.95 |
非毛管孔隙度Noncapillary porosity | 0.40 | 0.81 | 0.49 | 0.51 | 0.39 |
总孔隙度Total porosity | 0.92 | 0.97 | 0.87 | 0.94 | 0.91 |
自然含水量Water content | 0.78 | 0.98 | 0.91 | 0.87 | 0.91 |
最大持水量Maximum moisture capacity | 0.62 | 0.93 | 0.94 | 0.75 | 0.80 |
毛管持水量Capillary capacity | 0.56 | 0.86 | 0.88 | 0.70 | 0.75 |
田间持水量Field capacity | 0.56 | 0.89 | 0.80 | 0.63 | 0.69 |
全氮Total nitrogen | 0.62 | 0.68 | 0.68 | 0.75 | 0.69 |
全磷Total phosphorus | 0.71 | 0.94 | 0.71 | 0.79 | 0.78 |
全钾Total potassium | 0.50 | 0.83 | 0.80 | 0.84 | 0.55 |
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
碱解氮 Alkaline hydrolysis nitrogen | 0.68 | 0.86 | 0.73 | 0.68 | 0.81 |
有效磷Available phosphorus | 0.56 | 0.96 | 0.88 | 0.66 | 0.44 |
速效钾Rapidly available potassium | 0.56 | 0.57 | 0.86 | 0.60 | 0.73 |
有机碳Organic carbon | 0.73 | 0.58 | 0.61 | 0.68 | 0.78 |
pH | 0.52 | 0.92 | 0.64 | 0.60 | 0.54 |
碱性磷酸酶AKP | 0.64 | 0.94 | 0.73 | 0.68 | 0.68 |
脲酶 UE | 0.81 | 0.89 | 0.89 | 0.85 | 0.81 |
蔗糖酶SC | 0.72 | 0.89 | 0.83 | 0.84 | 0.79 |
过氧化氢酶CAT | 0.65 | 0.94 | 0.70 | 0.57 | 0.87 |
多酚氧化酶PPO | 0.72 | 0.80 | 0.94 | 0.94 | 0.94 |
脱氢酶DHA | 0.58 | 0.92 | 0.65 | 0.62 | 0.58 |
关联度Degree of association | 0.64 | 0.86 | 0.77 | 0.72 | 0.72 |
Table 3 Grey correlation coefficients of physical and chemical properties and enzyme activities of different reconstructed soils
指标Index | C1 | C2 | C3 | C4 | C5 |
---|---|---|---|---|---|
碱解氮 Alkaline hydrolysis nitrogen | 0.68 | 0.86 | 0.73 | 0.68 | 0.81 |
有效磷Available phosphorus | 0.56 | 0.96 | 0.88 | 0.66 | 0.44 |
速效钾Rapidly available potassium | 0.56 | 0.57 | 0.86 | 0.60 | 0.73 |
有机碳Organic carbon | 0.73 | 0.58 | 0.61 | 0.68 | 0.78 |
pH | 0.52 | 0.92 | 0.64 | 0.60 | 0.54 |
碱性磷酸酶AKP | 0.64 | 0.94 | 0.73 | 0.68 | 0.68 |
脲酶 UE | 0.81 | 0.89 | 0.89 | 0.85 | 0.81 |
蔗糖酶SC | 0.72 | 0.89 | 0.83 | 0.84 | 0.79 |
过氧化氢酶CAT | 0.65 | 0.94 | 0.70 | 0.57 | 0.87 |
多酚氧化酶PPO | 0.72 | 0.80 | 0.94 | 0.94 | 0.94 |
脱氢酶DHA | 0.58 | 0.92 | 0.65 | 0.62 | 0.58 |
关联度Degree of association | 0.64 | 0.86 | 0.77 | 0.72 | 0.72 |
[1] | FU Q Z, YUE M, FENG M, et al.. Evaluating the sustainability of mine rehabilitation programs in China [J]. Restor. Ecol., 2020,28(5):1061-1066. |
[2] | 王佳欢,杨新兵,刘彦林,等.采石废弃地弃渣与农田土混合土壤粒径特征及水文效应[J].水土保持学报,2022,36(3):338-344. |
WANG J H, YANG X B, LIU Y L, et al.. Experimental study on particle size characteristics and hydrological effect of mixed soil of quarrying waste residue and farmland soil [J]. J. Soil Water Conserv., 2022, 36(3):338-344. | |
[3] | JIN W J, WEI Z Y, LIU X Z, et al.. Effects of constructing farmland with large amounts of iron tailings as soil reconstruction materials on soil properties and crop growth [J/OL]. Sci. Rep., 2022, 12(1):20205 [2024-08-05]. . |
[4] | HU Z Q, ZHU Q, LIU X R, et al.. Preparation of topsoil alternatives for open-pit coal mines in the Hulunbuir grassland area, China [J/OL]. Appl. Soil Ecol., 2020, 147:103431 [2024-08-05]. . |
[5] | 胡振琪.矿山复垦土壤重构的理论与方法[J].煤炭学报,2022,47(7):2499-2515. |
HU Z Q. Theory and method of soil reconstruction of reclaimed mined land [J]. J. China Coal Soc., 2022,47(7):2499-2515. | |
[6] | 胡振琪,肖武,赵艳玲.再论煤矿区生态环境“边采边复”[J].煤炭学报,2020,45(1):351-359. |
HU Z Q, XIAO W, ZHAO Y L. Re-discussion on coal mine eco-environment concurrent mining and reclamation [J]. J. China Coal Soc., 2020,45(1):351-359. | |
[7] | 荣颖,王淳,孙光林,等.不同重构土壤材料配比的土壤改良和苜蓿生长效应研究[J].金属矿山,2022 (6):197-204. |
RONG Y, WANG C, SUN G L, et al.. Research on effect of different ratios of reconstructed soil materials on soil improvement and alfalfa growth [J]. Met. Mine, 2022(6):197-204. | |
[8] | 王凡,曹银贵,王玲玲,等.土壤微生物及酶活性对露天矿不同土壤重构方式的响应特征[J].煤炭科学技术, 2022,50(6):249-260. |
WANG F, CAO Y G, WANG L L, et al.. Response characteristics of soil microorganisms and enzyme activities to different soil reconstruction methods in open-pit mines [J]. Coal Sci. Technol., 2022,50(9):249-260. | |
[9] | DE MEDEIROS E V, DE ALCANTARA NOTARO K, DE BARROS J A, et al.. Absolute and specific enzymatic activities of sandy entisol from tropical dry forest,monoculture and intercropping areas [J]. Soil Tillage Res., 2015,145:208-215. |
[10] | LI J G, PU L J, HAN M F, et al.. Soil salinzation research in China: advances and prospects [J]. J. Geographical Sci., 2014,24(5):943-960. |
[11] | 张期奇,董希斌,张甜,等.抚育间伐强度对兴安落叶松林不同演替阶段水源涵养的影响[J].东北林业大学学报,2019,47(10):55-63. |
ZHANG Q Q, DONG X B, ZHANG T, et al.. Effects of tending thinning intensity on water conservation in different succession stages of Larix gmelinii forest [J]. J. Northeast For. Univ., 2019,47(10):55-63. | |
[12] | 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000:30-114. |
[13] | 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986:1-376. |
[14] | 刘晓敏,位志坤,王晓丽,等.基于灰色关联分析法的湖北烤烟还原糖含量与叶片形态特征关系研究[J].南方农业学报,2022,53(6):1536-1542. |
LIU X M, WEI Z K, WANG X L, et al.. Study on relationship between reducing sugar content and leaf morphological characteristics of flue-cured tobacco in Hubei Province based on grey correlation analysis [J]. J. South. Agric., 2022,53(6):1536-1542. | |
[15] | 陈兰兰,肖海平,刘鑫钰,等.灰色关联度支持下的露天矿边坡稳定性影响因素敏感性分析[J].测绘通报,2024(1):145-149. |
CHEN L L, XIAO H P, LIU X Y, et al.. Sensitivity analysis of influencing factors of open-pit mine slope stability based on grey correlation [J]. Bull. Surv. Map., 2024(1):145-149. | |
[16] | 周杨,杨永刚.不同重构方式下古交典型矿区土壤持水性差异研究[J].山西大学学报(自然科学版),2022,45(5):1369-1376. |
ZHOU Y, YANG Y G. Water-holding capacities of soil under different reconstruction patterns in Gujiao typical mining area, Shanxi [J]. J. Shanxi Univ. (Nat. Sci.), 2022,45(5):1369-1376. | |
[17] | 杨敏,阳珍,胥晓,等.不同植被恢复类型对四川泸石高速公路边坡土壤胞外酶及化学计量特征的影响[J].土壤通报,2024,55(1):161-172. |
YANG M, YANG Z, XU X, et al.. Effects of different vegetation restoration types on extracellular enzymes and stoichiometric characteristics of soil in Lu-Shi expressway slopes,Sichuan province [J]. Chin. J. Soil Sci., 2024,55(1):161-172. | |
[18] | 刘深妍,李凤麟,鲁静丽,等.我国主要有色金属矿区周边农田土壤酶活性及影响因素[J].农业环境科学学报,2022,41(12):2797-2804. |
LIU S Y, LI F L, LU J L, et al.. Soil enzyme activities and influencing factors in farmlands around metalliferous mine wastelands in China [J]. J. Agron. Environ. Sci., 2022,41(12):2797-2804. | |
[19] | SINSABAUGH R L. Phenol oxidase,peroxidase and organic matter dynamics of soil [J]. Soil Biol. Biochem., 2010,42(3):391-404. |
[20] | 董齐琪,王海燕,杜雪,等.东北低山区典型林分类型土壤脲酶活性特征 [J]. 应用与环境生物学报, 2023,29(3):690-695. |
DONG Q Q, WANG H Y, DU X, et al.. Characteristics of soil urease activity in typical forest types in low mountain area of Northeast China [J]. Chin. J. Appl. Environ., 2023,29(3):690-695. | |
[21] | PENG X Q, WANG W. Stoichiometry of soil extracellular enzyme activity along a climatic transect in temperate grasslands of Northern China [J]. Soil Biol. Biochem., 2016,98:74-84. |
[22] | 田静,盛茂银,汪攀,等.西南喀斯特土地利用变化对植物凋落物-土壤C、N、P化学计量特征和土壤酶活性的影响[J].环境科学,2019,40(9):4278-4286. |
TIAN J, SHENG M Y, WANG P, et al.. Influence of land use change on litter and soil C, N, P stoichiometric characteristics and soil enzyme activity in Karst ecosystem,southwest China [J]. Environ. Sci., 2019,40(9):4278-4286. | |
[23] | KIVLIN S N, TRESEDER K K. Soil extracellular enzyme activities correspond with abiotic factors more than fungal community composition [J]. Biogeochemistry, 2014,117(1):23-37. |
[24] | CLEVELAND C C, LIPTZIN D. C:N:P stoichiometry in soll:is there a "redfield ratlofor the microblal blomass? [J]. Biogeochemistry, 2007,85:235-252. |
[25] | 闫宁,战宇,苗馨月,等.强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J].中国农业科技导报,2022,24(6):133-144. |
YAN N, ZHAN Y, MIAO X Y, et al.. Effects of reductive soil disinfestation on soil bacterial community structure and soil enzyme activity in continuous cropping of ginseng [J]. J. Agric. Sci. Technol., 2022, 24(6):133-144. | |
[26] | 蒲全明,杨鹏,邓榆川,等.不同施肥方式对冬春茬甘蓝根际土壤酶活性、土壤养分及品质的影响[J].中国农业科技导报, 2020,22(7):130-139. |
PU Q M, YANG P, DENG Y C, et al.. Effects of different fertilization methods on rhizosphere soil enzyme activities, soil nutrients and quality of winter-spring cabbage [J]. J. Agric. Sci. Technol., 2020,22(7):130-139. | |
[27] | BAENA CWIC, ANDRÉS-ABELLÁN M, LUCAS-BORJA M E, et al.. Thinning and recovery effects on soil properties in two sites of a Mediterranean forest, in Cuenca Mountain (South-eastern of Spain) [J]. For. Ecol. Manag., 2013,308:223-230. |
[28] | 刘艳,王成,彭镇华,等.北京市崇文区不同类型绿地土壤酶活性及其与土壤理化性质的关系[J].东北林业大学学报,2010,38(4):66-70. |
LIU Y, WANG C, PENG Z H, et al.. Soil enzyme activity and its relationship with soil physico-chemical properties in green areas of Chongwen district of Beijing [J]. J. Northeast. For. Univ., 2010,38(4):66-70. | |
[29] | 周礼恺,陈冠雄,陈利军,等.土壤酶学研究的新近进展[C]//中国土壤学会.中国土壤学会第十次全国会员代表大会暨第五届海峡两岸土壤肥料学术交流研讨会论文集(面向农业与环境的土壤科学综述篇). 北京:科学出版社,2004,44-52. |
[30] | KOZHEVIN P A. Soil “Health” indicators in soil assessment (review) [J]. Moscow Univ. Soil Sci. Bull., 2023,78(2):84-92. |
[31] | DANIEL T, JAROSLAVA J, MARIE A M, et al.. Soil quality assessment using SAS (soil assessment system) [J]. Soil Water Res., 2023,18(1):1-15. |
[32] | 李国强,冯晓,郑国清,等.基于改进灰色关联模型的土壤肥力综合评价[J].河南农业科学,2013,42(4):71-74. |
LI G Q, FENG X, ZHENG G Q, et al.. Comprehensive evaluation of soil fertility based on improved grey relation model [J]. J. Henan Agric. Sci., 2013,42(4):71-74. | |
[33] | 肖豪,黄柏豪,孙凯,等.应用灰色关联法分析石灰配施有机肥对镉污染土壤-植物系统的影响[J].农业环境科学学报,2022,41(9):1966-1974. |
XIAO H, HUANG B H, SUN K, et al.. Grey relational analysis for evaluating the effects of lime combined with organic fertilizer on a cadmiumcontaminated soil-plant system [J]. J. Agro-Environ. Sci., 2022,41(9):1966-1974. |
[1] | Qi ZHOU, Qiang LIU, Jing ZHANG, Chaochao DENG, Zhenlong WANG, Yang LIU, Fang WU, Hao CHANG, Yanfang ZHOU, Cuicui SU, Zhiguo SHI, Zhengrui GAO, Fengjie MA. Effects of Organic Fertilizer Replacing Chemical Fertilizer on Yield and Soil Biological Characteristics of Pumpkin [J]. Journal of Agricultural Science and Technology, 2025, 27(7): 190-203. |
[2] | Ergang WANG, Pengyuan LYU, Yi ZHOU, Yu ZHAN, Guixiang HE, Lixiang WANG, Xinyue MIAO, Changbao CHEN, Qiong LI. Effects of Biocontrol Bacteria on Soil Properties and Bacterial Community Structure of Ginseng Continuous Cropping [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 140-148. |
[3] | Darong LI, Xiaoling LI, Wuxian ZHOU, Meide ZHANG, Xiaogang JIANG, Jinwen YOU, Hua WANG. Effects of Partial Substitution of Chemical Fertilizer with Organic Fertilizer on Growth and Soil Properties of Fritillaria hupehensis [J]. Journal of Agricultural Science and Technology, 2025, 27(3): 216-226. |
[4] | Xingsong WANG, Na WANG, Yu DU, Peng ZHOU, Ge WANG, Meng JIA, Zhaoli XU, Yuxiang BAI. Effects of Organic Fertilizer on Organic Matter Composition and Microbial Community Structure of Tobacco-Growing Soil in Yuxi [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 201-212. |
[5] | Jidong ZHANG, Yaxiong ZHANG, Wei CHENG, Li PU, Luhang LIU, Yaming WANG. Effects of Combined Application of Biochar and Organic Fertilizer on Soil Physicochemical Properties and Microbial Community Characteristics in Apple Recropping Field [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 213-222. |
[6] | Yalin YANG, Fengjinglin WU, Jianxin CHEN, Ziqiang WU, Li LIU, Donghua ZHANG, Huancheng MA, Jianrong WU. Analysis on Structure and Diversity of Fungi Community in Rhizosphere Soil and Root System of Camellia oleifera Root Rot [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 121-135. |
[7] | Zifan WANG, Yan LI, Qingyin ZHANG, Dandan WANG, Jianhua SHI, Xiaobin GENG, Dongliang TIAN, Zengming ZHONG, Xiaoming ZHAO, Lianfen QI. Effect of Microbicides on Main Diseases and Soil Microbial Communities of Tomatoes in Facilities [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 102-112. |
[8] | Yue HUANG, Yanfen XIE, Xuanquan ZHU, Meng JIA, Ge WANG, Yuxiang BAI, Yu DU, Peng ZHOU, Yuting ZHAO, Hongqiong ZHU, Fan YANG, Zhiwen XIAO, Wenbo WANG, Zhipeng FANG, Jiabao HAN, Na WANG. Risk Assessment and Influencing Factors Analysis of Chlorine Content in Tobacco Leaves in Tobacco Planting Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 206-213. |
[9] | Yangyang DU, Yuanyuan BAO, Xiangyu LIU, Xinyong ZHANG. Effects of Tartary Buckwheat Rotation on Enzyme Activities and Microorganisms in Rhizosphere Soil of Cultivated Potato in Yunnan Province [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 192-200. |
[10] | Limin GAO, Zechen GU, Xuefei GONG, Lianming CUI, Dongsen GUO, Ying ZHOU, Lin WANG, Qishun WEI. Effects of Grass Growing on the Productivity of Orchard-Soil System in China: A Meta-Analysis [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 184-194. |
[11] | Tongyu ZHANG, Ying GOU, Qi LI, Li YANG. Effects of Ginseng Rust Rot on Ginseng Quality and Soil Related Factors [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 124-133. |
[12] | Xudong ZHOU, Tianhua HAN, Yunxin SHEN, Zhufeng SHI, Biao HE, Mingying YANG, Weihua PEI, Yonghong HE, Peiwen YANG. Response Characteristics of Soil Microecology in Long-term Continuous Cropping Tobacco Field Under 4 Rotation Patterns [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 174-187. |
[13] | Mingze MA, Fan ZHANG, Tian WANG, Wenfang LI, Juan MAO, Baihong CHEN, Zonghuan MA. Effects of Different Fertilizers on Soil and Sapling Growth in Cherry Orchard [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 191-203. |
[14] | Jingjie GUO, Xiaomeng REN, Zhongju MENG, Tao WANG, Shuai QI, Jiajia SONG, Baomengkenashun, Shengli HAN. Characteristics of Soil Physicochemical Properties of Plant Protection System for Salt Lake in Semi-arid Wind-sand Grassland Area [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 182-192. |
[15] | Rui XIAO, Lu TAN, Liang WU, Hao ZHANG, Jiayuan GUO, Haijun YANG. Microbial Community Structure and Diversity in Rhizosphere and Non-rhizosphere Soil of Kochia scoparia Under Cd Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 203-215. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||