Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (8): 213-222.DOI: 10.13304/j.nykjdb.2024.0009
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Jidong ZHANG(), Yaxiong ZHANG(
), Wei CHENG, Li PU, Luhang LIU, Yaming WANG
Received:
2024-01-05
Accepted:
2024-03-11
Online:
2024-08-15
Published:
2024-08-12
Contact:
Yaxiong ZHANG
张继东(), 张亚雄(
), 程伟, 蒲莉, 柳路行, 王亚明
通讯作者:
张亚雄
作者简介:
张继东E-mail:gszjd@126.com;
基金资助:
CLC Number:
Jidong ZHANG, Yaxiong ZHANG, Wei CHENG, Li PU, Luhang LIU, Yaming WANG. Effects of Combined Application of Biochar and Organic Fertilizer on Soil Physicochemical Properties and Microbial Community Characteristics in Apple Recropping Field[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 213-222.
张继东, 张亚雄, 程伟, 蒲莉, 柳路行, 王亚明. 生物质炭和有机肥配施对苹果重茬育苗地土壤理化性质和微生物群落特征的影响[J]. 中国农业科技导报, 2024, 26(8): 213-222.
pH | 电导率EC/(mS·cm-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 速效钾AK/(mg·kg-1) | 有机碳SOC/(g·kg-1) | |
---|---|---|---|---|---|---|---|---|---|
8.13±0.02 e | 0.27±0.02 e | 1.66±0.03 e | 1.02±0.05 d | 16.81±0.02 d | 192.08±0.03 d | 30.32±0.03 e | 172.00±1.00 e | 7.88±0.01 e | |
8.17±0.03 d | 0.31±0.02 d | 1.87±0.02 c | 1.13±0.02 c | 18.00±0.04 c | 214.00±0.02 c | 33.82±0.02 d | 232.33±1.53 d | 8.59±0.02 d | |
8.29±0.01 c | 0.35±0.02 c | 1.91±0.04 a | 1.43±0.02 b | 18.35±0.03 b | 244.00±0.03 a | 48.82±0.03 a | 260.67±1.15 a | 8.87±0.03 a | |
8.46±0.02 b | 0.45±0.01 b | 1.89±0.02 b | 1.42±0.01 b | 18.40±0.03 b | 232.23±0.03 b | 43.78±0.03 c | 255.00±1.00 c | 8.83±0.02 b | |
8.51±0.01 a | 0.47±0.01 a | 1.83±0.02 d | 1.46±0.02 a | 18.91±0.02 a | 234.11±0.03 b | 45.44±0.03 b | 258.00±1.73 b | 8.81±0.01 c |
Table 1 Physicochemical properties of apple rhizosphere soil under different treatments
pH | 电导率EC/(mS·cm-1) | 全氮 TN/(g·kg-1) | 全磷 TP/(g·kg-1) | 全钾 TK/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 速效钾AK/(mg·kg-1) | 有机碳SOC/(g·kg-1) | |
---|---|---|---|---|---|---|---|---|---|
8.13±0.02 e | 0.27±0.02 e | 1.66±0.03 e | 1.02±0.05 d | 16.81±0.02 d | 192.08±0.03 d | 30.32±0.03 e | 172.00±1.00 e | 7.88±0.01 e | |
8.17±0.03 d | 0.31±0.02 d | 1.87±0.02 c | 1.13±0.02 c | 18.00±0.04 c | 214.00±0.02 c | 33.82±0.02 d | 232.33±1.53 d | 8.59±0.02 d | |
8.29±0.01 c | 0.35±0.02 c | 1.91±0.04 a | 1.43±0.02 b | 18.35±0.03 b | 244.00±0.03 a | 48.82±0.03 a | 260.67±1.15 a | 8.87±0.03 a | |
8.46±0.02 b | 0.45±0.01 b | 1.89±0.02 b | 1.42±0.01 b | 18.40±0.03 b | 232.23±0.03 b | 43.78±0.03 c | 255.00±1.00 c | 8.83±0.02 b | |
8.51±0.01 a | 0.47±0.01 a | 1.83±0.02 d | 1.46±0.02 a | 18.91±0.02 a | 234.11±0.03 b | 45.44±0.03 b | 258.00±1.73 b | 8.81±0.01 c |
Fig. 1 α diversity of microbial community in rhizosphere soil of apple under different treatmentsA: OTU Venn diagram of bacteria; B: Shannon index of bacteria; C: Simpson index of bacteria; D: OTU Venn diagram of fungi; E: Shannon index of fungi; F:Simpson index of fungi
Fig. 2 Relative abundances of microbial communities in rhizosphere soil of apples under different treatmentsA: Phylum level of bacteria; B: Genus level of bacteria C: Phylum level of fungi; D: Genus level of fungi
Fig. 4 Mental analysis between rhizosphere soil microbial communities and soil physicochemical properties under different treatmentsA: Bacteria; B: Fungi. * and ** indicate significant at P<0.05 and P<0.01 levels, respectively.
Fig. 5 RDA analysis of microbial and environmental factors in apple rhizosphere soil under different treatmentsA: Bacteria; B: Fungi. EC—Electric conductivity; TN—Total nitrogen; TP—Total phosphorus; TK—Total potassium; AN—Alkali-hydrolyzale nitrogen; AP—Available phosphorus; AK—Available potassium; SOC—Soil organic carbon; Acidobac—Acidobacteriota; Proteobc—Proteobacteria; Gemmatim—Gemmatimonadota; Actinobac—Actinobacteriota; Firmicut—Firmicutes; Planctom—Planctomycetota; Chlorofl—Chloroflexi; Bacteroi—Bacteroidota; Myxococc—Myxococcota; Methylom—Methylomirabilota; Crenarch—Crenarchaeota; Verrucom—Verrucomicrobiota; NB1-j—NB1-j; Latescib—Latescibacterota. Fungi—Basidiom—Basidiomycota; Mortierl—Mortierellomycota; Ascomyct—Ascomycota; Aphelidi—Aphelidiomycota; Chytridi—Chytridiomycota; Glomerom—Glomeromycota; Mucoromc—Mucoromycota; Olpidiom—Olpidiomycota; Rozellom—Rozellomycota; Blastocl—Blastocladiomycota; Zoopagom—Zoopagomycota; Kickxell—Kickxellomycota; Monoblep—Monoblepharomycota; Entomoph—Entomophthoromycota
1 | 刘园,刘布春,程存刚,等.基于全球文献计量对苹果响应气候变化研究的热点分析[J].果树学报,2021,38(10):1748-1759. |
LIU Y, LIU B C, CHENG C G, et al.. Hotspot analysis of apple’s response to climate change based on global bibliometrics [J]. J. Fruit Sci., 2021, 38(10):1748-1759. | |
2 | 孙文泰,马明.黄土高原长期覆膜苹果园土壤物理退化与细根生长响应[J].植物生态学报,2021,45(9):972-986. |
SUN W T, MA M. Response of soil physical degradation and fine root growth in long-term mulching apple orchards on the Loess Plateau [J]. Chin. J. Plant Ecol., 2021, 45(9):972-986. | |
3 | 倪蔚茹,王安然,贺锡燕,等.重茬土对相同砧木不同苹果品种生理指标及叶片抗氧化酶活性的影响[J].中国农业科学,2016,49(18):3597-3607. |
NI W R, WANG A R, HE X Y, et al.. Effects of after-reap soil on physiological indexes and leaf antioxidant activity of the different apple cultivars with the same rootstock [J]. Sci. Agric. Sin., 2016, 49(18):3597-3607. | |
4 | 王晓芳,夏群,栾日昇,等.万寿菊秸秆粉末处理对镰孢菌的抑制及苹果连作土壤施用效果[J].园艺学报, 2023,50(7):1518-1534. |
WANG X F, XIA Q, LUAN R S, et al.. Inhibition of Tagetes erecta straw powder on the main pathogens of apple continuous cropping obstacle and its field application effect [J]. Acta Hortic. Sin., 2023, 50(7):1518-1534. | |
5 | PERVAIZ Z H, IQBAL J, ZHANG Q, et al.. Continuous cropping alters multiple biotic and abiotic indicators of soil health [J/OL]. Soil Syst., 2020, 4(4):59 [2023-12-20]. . |
6 | LIU H, PAN F Y, HAN X, et al.. Response of soil fungal community structure to long-term continuous soybean cropping [J/OL]. Front. Microbiol., 2019, 9:3316 [2023-12-20]. . |
7 | LIU Z X, LIU J J, YU Z H, et al.. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition [J/OL]. Soil Till. Res., 2020, 197:104503 [2023-12-20]. . |
8 | GAO Z Y, HAN M K, HU Y Y, et al.. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil [J/OL]. Front. Microbiol., 2019, 10:2269 [2023-12-20]. . |
9 | LIU H, PAN F J, HAN X Z, et al.. A comprehensive analysis of the response of the fungal community structure to long-term continuous cropping in three typical upland crops [J]. J. Integr. Agric., 2020, 19(3):866-880. |
10 | TAN G, LIU Y J, PENG S G, et al.. Soil potentials to resist continuous cropping obstacle: three field cases [J/OL]. Environ. Res., 2021, 200:111319 [2023-12-20]. . |
11 | ZHANG Z Y, DONG X X, WANG S M, et al.. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China [J/OL]. Sci. Rep., 2020, 10(1):4718 [2023-12-20]. . |
12 | 陈心想,耿增超.生物质炭在农业上的应用[J].西北农林科技大学学报(自然科学版),2013,41(2):167-174. |
CHEN X X, GENG Z C. Application of biochar in agriculture [J]. J. Northwest A&F Univ. (Nat. Sci.), 2013, 41(2):167-174. | |
13 | 鲍士旦.土壤农化分析[M].第三版 北京:中国农业出版社,2000:1-495. |
14 | WANG H Y, SHENG Y F, JIANG W T, et al.. The effects of crop rotation combinations on the soil quality of old apple orchard [J]. Hortic. Plant J., 2022, 8(1):1-10. |
15 | TANG L, HAMIND Y, CHEN Z,et al.. A phytoremediation coupled with agro-production mode suppresses Fusarium wilt disease and alleviates cadmium phytotoxicity of cucumber (Cucumis sativus L .) in continuous cropping greenhouse soil [J/OL]. Chemosphere, 2021, 270:128634 [2023-12-20]. . |
16 | MA Z M, GUAN Z J, LIU Q C, et al.. Obstacles in continuous cropping: mechanisms and control measures [J]. Adv. Agron., 2023, 179:205-256. |
17 | WANG Y, JIN Y J, HAN P, et al.. Impact of soil disinfestation on fungal and bacterial communities in soil with cucumber cultivation [J/OL]. Fronti. Microbiol., 2021, 12:685111 [2023-12-20]. . |
18 | LI Q, ZHANG D, ZHANG J, et al.. Crop rotations increased soil ecosystem multifunctionality by improving keystone taxa and soil properties in potatoes [J/OL]. Front. Microbiol., 2023, 14:1034761 [2023-12-20]. . |
19 | GUIRE N, SONI A, RANGAN L, et al.. Sustainable improvement of soil health utilizing biochar and arbuscular mycorrhizal fungi: a review [J/OL]. Environ. Pollut., 2021, 268:115549 [2023-12-20]. . |
20 | 谢祖彬,刘琦.生物质炭的固碳减排与合理施用[J].农业环境科学学报,2020,39(4):901-907. |
XIE Z B, LIU Q. Rational application of biochar to sequester carbon and mitigate soil GHGs emissions: a review [J]. J. Agro-Environ. Sci., 2020, 39(4):901-907. | |
21 | ZHANG Y J, ZOU J L, MENG D L, et al.. Effect of soil microorganisms and labile C availability on soil respiration in response to litter inputs in forest ecosystems: a meta‐analysis [J]. Ecol. Evol., 2020, 10(24):13602-13612. |
22 | YUAN M, YU T, SHI Q, et al.. Rhizosphere soil bacterial communities of continuous cropping-tolerant and sensitive soybean genotypes respond differently to long-term continuous cropping in mollisols [J/OL]. Front. Microbiol., 2021, 12:729047 [2023-12-20]. . |
23 | LI Y, FANG F, WEI J, et al.. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: a three-year experiment [J/OL]. Sci. Rep., 2019, 9(1):12014 [2023-12-20]. . |
24 | GOROVTSOV A V, MINKINA T M, MANDZHIEVA S S, et al.. The mechanisms of biochar interactions with microorganisms in soil [J]. Environ. Geochem. Hlth., 2020, 42: 2495-2518. |
25 | GE X G, CAO Y H, ZHOU B Z, et al.. Biochar addition increases subsurface soil microbial biomass but has limited effects on soil CO2 emissions in subtropical Moso bamboo plantations [J]. Appl. Soil Ecol., 2019, 142:155-165. |
26 | SILVA L G, ANDRADE C A, BETTIOL W. Biochar amendment increases soil microbial biomass and plant growth and suppresses Fusarium wilt in tomato [J]. Trop. Plant Pathol., 2020, 45:73-83. |
27 | 杨阳,李海亮,马凯丽,等.连作对党参根际土壤理化性质、微生物活性及群落特征的影响[J].环境科学,2023,44(11):6387-6398. |
YANG Y, LI H L, MA K L, et al.. Effect of continuous cropping on the physicochemical properties, microbial activity, and community characteristics of the rhizosphere soil of Codonopsis pilosula [J]. Chin. J. Environ. Sci., 2023, 44(11):6387-6398. | |
28 | 孔晨晨,张世文,王维瑞,等.不同连作年限设施农用地土壤有机碳与细菌群落功能特征[J].农业机械学报,2024,55(2):326-337. |
KONG C C, ZHANG S W, WANG W R, et al.. Characteristics of soil organic carbon and bacterial communities functional in agricultural soils of facilities with different continuous cropping period [J]. Trans. Chin. Soc. Agric. Mach., 2024, 55(2):326-337. | |
29 | LASOTA J, BLONSKA E, BABIAK T, et al.. Effect of charcoal on the properties, enzyme activities and microbial diversity of temperate pine forest soils [J/OL]. Forests, 2021, 12(11):1488 [2023-12-20]. . |
30 | KERNER P, STRUHS E, MIRKOUEI A, et al.. Microbial responses to biochar soil amendment and influential factors: a three-level meta-analysis [J/OL]. BioRxiv, 2023, 6(2):543269 [2023-12-20]. . |
31 | ZHOU R R, WANG Y, TIAN M M, et al.. Mixing of biochar, vinegar and mushroom residues regulates soil microbial community and increases cucumber yield under continuous cropping regime [J/OL]. Appl. Soil Ecol., 2021, 161:103883 [2023-12-20]. . |
32 | 王光华,刘俊杰,于镇华,等.土壤酸杆菌门细菌生态学研究进展[J].生物技术通报,2016,32(2):14-20. |
WANG G H, LIU J J, YU Z H, et al.. Research progress of Acidobacteria ecology in soils [J]. Biotechnol. Bull., 2016, 32 (2):14-20. | |
33 | GE Z, LI S Y, BOL R, et al.. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition [J]. Soil Till. Res., 2021, 213:105120 [2023-12-20]. . |
[1] | Yongjun XIE, Xiaozhuo PAN, Fuhui CHEN, Kaibo YIN, Jiayue JIN, Yibing WANG. Screening, Identification and Biocontrol of Bacteria Degrading Ginseng Phenolic Acid Autotoxic Substances [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 147-155. |
[2] | Hao WANG, Pengjie JIN, Shan GAO, Mingxuan ZHAO, Changai ZHANG, Shengdao SHAN. Effect of Additives on Stability Immersed in Water of Biochar Based Long-acting Fertilizer [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 174-182. |
[3] | Zitian PU, Hong WANG, Bin ZHAO, Xinxin WANG. Effects of Different Soil Amendments on Growth of Scutellaria baicalensis and Soil Enzyme Activities in Continuous Cropping [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 189-198. |
[4] | Yanbo FU, Bingbing LENG, Qingyong BIAN, Zhiduo DONG, Guohong LIU, Haifeng LI, Yunmeng WEN, Wenbo GUO, Wanxu ZHANG. Passivation Effect of Biochar on Soil Cadmium Pollution and Rape Growth [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 183-190. |
[5] | Yuxin CHEN, Hongmei ZHAO, Weijun YANG, Mei YANG, Song GUO, Shilong SONG, Chao HUI. Effects of Biochar on Soil Microbial Carbon Source Utilization and Spring Wheat Yield [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 174-183. |
[6] | Ling LIN, Yujie ZHU, Lei FENG, Guangmu TANG, Yunshu ZHANG, Wanli XU. Effects of Aged Cotton Straw Biochars on Soil Properties and Nitrogen Utilization of Wheat [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 184-191. |
[7] | Limin GAO, Zechen GU, Xuefei GONG, Lianming CUI, Dongsen GUO, Ying ZHOU, Lin WANG, Qishun WEI. Effects of Grass Growing on the Productivity of Orchard-Soil System in China: A Meta-Analysis [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 184-194. |
[8] | Yahong ZHAO, Qianyu HU, Rong XIA, Zhijiang WANG, Yonghui XIE, Xianwen YE, Lei YU, Ying QI, Shaowu YANG, Zhiqin XUE, Zhixing WU, Feiyan HUANG, Tianhua HAN. Effects of Biochar Fertilizer on Rhizosphere Flora and Physicochemical Properties of Flue-cured Tobacco Susceptible to Root Knot Nematode [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 206-214. |
[9] | Jingjie GUO, Xiaomeng REN, Zhongju MENG, Tao WANG, Shuai QI, Jiajia SONG, Baomengkenashun, Shengli HAN. Characteristics of Soil Physicochemical Properties of Plant Protection System for Salt Lake in Semi-arid Wind-sand Grassland Area [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 182-192. |
[10] | Jing GAO, Minggang XU, Ran LI, Zejiang CAI, Nan SUN, Qiang ZHANG, Lei ZHENG. Effects of Biochar Application on Soil pH: A Meta-Analysis [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 186-196. |
[11] | Rui XIAO, Lu TAN, Liang WU, Hao ZHANG, Jiayuan GUO, Haijun YANG. Microbial Community Structure and Diversity in Rhizosphere and Non-rhizosphere Soil of Kochia scoparia Under Cd Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 203-215. |
[12] | Hongyuan LIU, Zhihua ZHOU, Guangxin ZHAO, Qinrui SHEN. Effects of Long-term Biochar Application on Greenhouse Gas Emission and Its Temporal Effect in Huang-Huai-Hai Plain [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 178-186. |
[13] | Xudong WANG, Xuebing REN, Shu TANG, Qin GUO, Mengyao XUE, Peng JIN, Yunhua ZHANG. Application of Sludge Biochar in Soil Improvement [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 165-173. |
[14] | Lu MENG, Jingwen FAN, Xinyu SAI, Lusheng ZENG, Xiangyun SONG, Dejie CUI. Effects of Lime on Soil Improvement and Plant Growth in Apple Orchards [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 197-204. |
[15] | Jia YAO, Jiaxin LIU, Yan SU, Xiaojuan SU. Effects of Combined Application of Tobacco Stem Biochar and Nitrogen Fertilizers on Corn Growth and Soil Properties in Seeding Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 140-151. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||