Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (8): 203-215.DOI: 10.13304/j.nykjdb.2023.0046
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Rui XIAO1,2(), Lu TAN1, Liang WU3, Hao ZHANG3, Jiayuan GUO1, Haijun YANG1(
)
Received:
2023-01-19
Accepted:
2023-04-06
Online:
2023-08-20
Published:
2023-09-07
Contact:
Haijun YANG
肖锐1,2(), 谭璐1, 吴亮3, 张皓3, 郭佳源1, 杨海君1(
)
通讯作者:
杨海君
作者简介:
肖锐 E-mail:2850901@qq.com;
基金资助:
CLC Number:
Rui XIAO, Lu TAN, Liang WU, Hao ZHANG, Jiayuan GUO, Haijun YANG. Microbial Community Structure and Diversity in Rhizosphere and Non-rhizosphere Soil of Kochia scoparia Under Cd Stress[J]. Journal of Agricultural Science and Technology, 2023, 25(8): 203-215.
肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215.
土壤类型Soil type | 土壤含水量 Soil water content/% | pH | 有机质Organic matter/(g·kg-1) | 全氮 TN/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 总磷 TP/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 总Cd Total Cd/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
根际土壤 Rhizosphere soil | 23.26±4.61 a | 5.01±0.11 b | 21.71±5.32 a | 3.12±0.95 a | 141.33±31.69 a | 0.72±0.17 a | 52.91±18.91 a | 2.06±0.012 b |
非根际土壤 Non-rhizosphere soil | 23.76±3.98 a | 5.56±0.34 a | 19.83±4.93 a | 3.03±0.87 a | 139.21±33.14 a | 0.68±0.09 a | 42.05±14.85 b | 2.14±0.009 a |
Table 1 Chemical properties, nutrients and total Cd content of rhizosphere and non-rhizosphere soil of Kochia scoparia under Cd stress
土壤类型Soil type | 土壤含水量 Soil water content/% | pH | 有机质Organic matter/(g·kg-1) | 全氮 TN/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 总磷 TP/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 总Cd Total Cd/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
根际土壤 Rhizosphere soil | 23.26±4.61 a | 5.01±0.11 b | 21.71±5.32 a | 3.12±0.95 a | 141.33±31.69 a | 0.72±0.17 a | 52.91±18.91 a | 2.06±0.012 b |
非根际土壤 Non-rhizosphere soil | 23.76±3.98 a | 5.56±0.34 a | 19.83±4.93 a | 3.03±0.87 a | 139.21±33.14 a | 0.68±0.09 a | 42.05±14.85 b | 2.14±0.009 a |
微生物Microbe | 土壤类型 Soil stype | Shannon指数Shannon index | Simpson指数Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖率 Coverage rate/% |
---|---|---|---|---|---|---|
细菌Bacteria | 非根际土壤 Non-rhizosphere soil | 5.082 4±0.662 4 | 0.032 5±0.030 3 | 1 616.415 4±47.307 0 | 1 660.041 4±30.036 3 | 0.995 3±0.000 6 |
根际土壤 Rhizosphere soil | 5.444 8±0.293 2 | 0.016 2±0.005 2 | 1 575.675 7±78.985 8 | 1 592.241 7±83.179 7 | 0.997 0±0.001 1 | |
P值 P value | 0.46 | 0.45 | 0.49 | 0.29 | — | |
真菌 Fungi | 非根际土壤 Non-rhizosphere soil | 2.555 7±0.147 7 | 0.309 5±0.030 6 | 589.659 0±38.060 7 | 598.972 0±31.759 7 | 0.998 6±0.000 1 |
根际土壤 Rhizosphere soil | 2.418 0±0.119 6 | 0.280 5±0.027 5 | 529.513 8±30.925 0 | 536.916 3±31.206 0 | 0.998 7±0.000 0 | |
P值 P value | 0.28 | 0.29 | 0.10 | 0.073 | — |
Table 2 Alpha index of the bacterial and fungal communities in Schrad.rhizosphere and non-rhizosphere soil of Kochia scoparia under Cd stress
微生物Microbe | 土壤类型 Soil stype | Shannon指数Shannon index | Simpson指数Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖率 Coverage rate/% |
---|---|---|---|---|---|---|
细菌Bacteria | 非根际土壤 Non-rhizosphere soil | 5.082 4±0.662 4 | 0.032 5±0.030 3 | 1 616.415 4±47.307 0 | 1 660.041 4±30.036 3 | 0.995 3±0.000 6 |
根际土壤 Rhizosphere soil | 5.444 8±0.293 2 | 0.016 2±0.005 2 | 1 575.675 7±78.985 8 | 1 592.241 7±83.179 7 | 0.997 0±0.001 1 | |
P值 P value | 0.46 | 0.45 | 0.49 | 0.29 | — | |
真菌 Fungi | 非根际土壤 Non-rhizosphere soil | 2.555 7±0.147 7 | 0.309 5±0.030 6 | 589.659 0±38.060 7 | 598.972 0±31.759 7 | 0.998 6±0.000 1 |
根际土壤 Rhizosphere soil | 2.418 0±0.119 6 | 0.280 5±0.027 5 | 529.513 8±30.925 0 | 536.916 3±31.206 0 | 0.998 7±0.000 0 | |
P值 P value | 0.28 | 0.29 | 0.10 | 0.073 | — |
Fig. 5 Comparison of microbial communities between rhizosphere and non-rhizosphere soilsNote:Red mark indicates significant difference between rhizosphere and non-rhizosphere soils at P<0.05 level.
1 | RAMAKRISHNA W, YADAV R, LI K. Plant growth promoting bacteria in agriculture: two sides of a coin [J]. Appl. Soil Ecol., 2019, 138:10-18. |
2 | TENG Y, WANG X M, LI L N, et al.. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils [J/OL]. Front. Plant Sci., 2015, 6:32 [2022-12-20]. . |
3 | SUGIYAMA A. The soybean rhizosphere: metabolites, microbes, and beyond—a review [J]. J. Adv. Res., 2019, 19(3):67-73. |
4 | LAL S, RATNA S, SAID O B, et al.. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology [J]. Environ. Technol. Innov., 2018, 10(5):243-263. |
5 | ZHAO X, HUANG J, LU J, et al.. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine [J]. Ecotoxicol. Environ. Saf., 2019, 170(4):218-226. |
6 | DAS S, CHOU M L, JEAN J S, et al.. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata [J]. J. Hazard. Mater., 2017, 325(3):279-287. |
7 | XIAO E, NING Z, XIAO T, et al.. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump [J]. Environ. Pollut., 2019, 253(10):141-151. |
8 | YANG Q, TU S, WANG G, et al.. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L [J]. Int. J. Phytoremediat., 2012, 14(1):89-99. |
9 | CHENG L, CORD-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation [J]. Can. Geotech. J., 2013, 50(1):81-90. |
10 | HOU J, LIU W, WU L, et al.. Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome [J]. Appl. Soil Ecol., 2019, 133(1):62-69. |
11 | KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al.. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation [J]. J. Hazard. Mater., 2016, 317(11):169-179. |
12 | LI X, MENG D, LI J, et al.. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination [J]. Environ. Pollut., 2017, 231(12):908-917. |
13 | NARENDRULA-KOTHA R, NKONGOLO K K. Bacterial and fungal community structure and diversity in a mining region under long-term metal exposure revealed by metagenomics sequencing [J]. Ecol. Genet. Genomics, 2017, 2(2):13-24. |
14 | GUO H, NASIR M, LV J, et al.. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing [J]. Ecotoxicol. Environ. Saf., 2017, 144(10):300-306. |
15 | WU B H, LUO S H, LUO H Y, et al.. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic [J/OL]. Sci. Total Environ., 2022, 808(2):151995 [2022-12-20]. . |
16 | 麻莹,王晓苹,姜海波,等.盐碱胁迫下碱地肤体内的有机酸积累及其草酸代谢特点[J].草业学报,2017,26(7):158-165. |
MA Y, WANG X P, JIANG H B, et al.. Characteristics of organic acids accumulation and oxalate metabolism in Kochia sieversiana under salt and alkali stresses [J]. Acta Pratac. Sin., 2017, 26(7):158-165. | |
17 | ENDO T, KUBO‐NAKANO Y, LOPEZ R A, et al.. Growth characteristics of kochia (Kochia scoparia L.) and alfalfa (Medicago sativa L.) in saline environments [J]. Grassl. Sci., 2014, 60(4):225-232. |
18 | AIHEMAITI A, JIANG J, LIU N, et al.. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area [J]. J. Environ. Manage., 2018, 222(9):216-226. |
19 | HUANG N, TANG L, ZHU F, et al.. Salt ions accumulation and distribution characteristics of pioneer plant species at a bauxite residue disposal area, China [J]. J. Cent. South Univ., 2019, 26(2):323-330. |
20 | 陆俏,代政,崔梦萦,等.地肤对硼的耐受及富集能力研究[J].农业环境科学学报,2017,36(12):2407-2413. |
LU Q, DAI Z, CUI M Y, et al.. Boron tolerance and accumulation in Kochia scoparia [J]. J. Agro-Environ. Sci., 2017, 36(12):2407-2413. | |
21 | 张家洋,冯明,许飞,等.锌镉单一胁迫荠菜和地肤子的生长特性及对重金属的积累特征[J].西南林业大学学报(自然科学),2019,39(1):43-49. |
ZHANG J Y, FENG M, XU F, et al.. The Growth characteristics and accumulation abilities of heavy metals of Brassica juncea and Kochia scoparia under Zn and Cd stress [J]. J. Southwest For. Univ. (Nat. Sci.), 2019, 39(1):43-49. | |
22 | YANG L P, ZHU J, WANG P, et al.. Effect of Cd on growth, physiological response Cd subcellular distribution and chemical forms of Koelreuteria paniculata [J]. Ecotoxicol. Environ. Saf., 2018, 160(9):10-18. |
23 | 杨海君,郭佳源,谭菊,等.镉胁迫对2种酸性土壤地肤生长及其修复镉能力的影响[J].中国环境科学,2023, 43(5):2423-2433. |
YANG H J, GUO J Y, TAN J, et al.. Effects of cadmium stress on the growth and cadmium remediation of Kochia Scoparia in two kinds of acid soils [J]. China Environ. Sci., 2023, 43(5):2423-2433. | |
24 | 中国科学院南京土壤研究所. 土壤理化分析[M].上海:上海科学技术出版社,1978:153-182. |
25 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:221-259. |
26 | 周天阳,高景,王金牛,等.基于群落结构及土壤理化性质对围封7年青藏高原东南缘高山草地的综合评价[J].草业学报,2018, 27(12):1-11. |
ZHOU T Y, GAO J, WANG J N, et al.. Effects of 7-year enclosure on an alpine meadow at the south-eastern margin of Tibetan Plateau based on community structure and soil physico-chemical properties [J]. Acta Pratac. Sin., 2018, 27(12):1-11. | |
27 | 彭金根,龚金玉,范玉海,等.毛棉杜鹃根际与非根际土壤微生物群落多样性[J].林业科学,2022, 25(2): 89-99. |
PENG J G, GONG J Y, FAN Y H, et al.. Diversity of soil microbial communities in rhizosphere and non-rhizosphere of Rhododendron moulmainense [J]. Sci. Silvae Sin., 2022, 25(2):89-99. | |
28 | 鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2000:122-180. |
29 | 许晴,张放,许中旗,等. Simpson指数和Shannon-Wiener指数若干特征的分析及“稀释效应”[J].草业科学,2011,28(4):527-531. |
XU Q, ZHANG F, XU Z Q, et al.. Some characteristics of Simpson index and the Shannon-Wiener index and their dilution effect [J]. Pratac. Sci., 2011, 28(4):527-531. | |
30 | 尹原森,马国胜,曹春燕,等.不同地区凤丹根际土壤微生物功能多样性分析[J].分子植物育种,2021,19(20):6918-6926. |
YIN Y S, MA G S, CAO C Y, et al.. Soil rhizosphere microbial functional diversity analysis of Fengdan (Paeonia ostii) in three different regions [J]. Mol. Plant Breeding, 2021, 19(20):6918-6926. | |
31 | 王博,覃芳,史艳财,等.小花异裂菊根际与非根际微生物功能多样性比较[J].广西师范大学学报(自然科学版): 2022: 40(5): 237-246. |
WANG B, QIN F, SHI Y C, et al.. Comparison of microbial functional diversity between rhizosphere and non-rhizosphere of Heteroplexis microcephala, an peculiar plants in karst area [J]. J. Guangxi Norm. Univ. (Nat. Sci.), 2022: 40(5): 237-246. | |
32 | TIMMUSK S, PAALME V, PAVLICEK T, et al.. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates [J/OL]. PloS ONE, 2011, 6(3):e17968 [2022-12-20]. . |
33 | LIU C, LIN H, LI B, et al.. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil [J/OL]. Ecotoxicol. Environ. Saf., 2020, 202:110958 [2022-12-20]. . |
34 | 金裕华,邹涛,康薇,等.木本植物修复对重金属污染土壤微生物多样性及土壤肥力的影响[J].湖北理工学院学报,2018,34(6):15-19. |
JIN Y H, ZOU T, KANG W, et al.. Effects of woody phytoremediation on microbial diversity and soil fertility in heavy metal contaminated soil [J]. J. Hubei Polytechnic Univ., 2018, 34(6):15-19. | |
35 | 卞方圆,钟哲科,张小平,等.毛竹和伴矿景天对重金属污染土壤的修复作用和对微生物群落的影响[J].林业科学,2018,54(8):106-116. |
BIAN F Y, ZHONG Z K, ZHANG X P, et al.. Remediation of heavy metal contaminated soil by Moso bamboo (Phyllostachys edulis) intercropping with Sedum plumbizincicola and the impact on microbial community structure [J]. Sci. Silvae Sin., 2018, 54(8):106-116. | |
36 | 吴秋芳,侯立江,何玲敏,等.北艾根际与非根际土壤微生物多样性的高通量测序分析[J].河南农业大学学报,2021,55(5):928-935. |
WU Q F, HOU L J, HE L M, et al.. Illumina next-generation sequencing analysis of microbial diversity in rhizosphere and non-rhizosphere soils of Artemisia vulgaris L. [J]. J. Henan Agric. Univ., 2021, 55(5):928-935. | |
37 | KAPLAN H, RATERING S, HANAUER T, et al.. Impact of trace metal contamination and in situ remediation on microbial diversity and respiratory activity of heavily polluted kastanozems [J]. Biol. Fert. Soils, 2014, 50(5):735-744. |
38 | YANG C B, YAN K R, MA C N, et al.. Insight into the root growth, soil quality, and assembly of the root-associated microbiome in the virus-free Chrysanthemum morifolium [J/OL]. Ind. Crops Prod., 2022, 176:114362 [2022-12-20]. |
39 | YANG J, DUAN Y, ZHANG R, et al.. Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard [J/OL]. Ind. Crops Prod., 2020, 149:112344 [2022-12-20]. . |
40 | YANG C, ZHANG X, NI H, et al.. Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of Moso bamboo (Phyllostachys edulis) plantations in subtropical China [J/OL]. Sci. Total Environ., 2021, 752:142333 [2022-12-20]. . |
41 | 李华伟,罗文彬,许国春,等.基于高通量测序的福建北部马铃薯晚疫病株根际土壤细菌群落分析[J].微生物学通报,2022, 49(3):1017-1029. |
LI H W, LUO W B, XU G C, et al.. High-throughput sequencing of bacterial community in the rhizosphere soil of potato infected by late blight in northern Fujian province [J]. Microbiology, 2022, 49(3):1017-1029. | |
42 | JIANG B, ADEBAYO A, JIA J, et al.. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community [J]. J. Hazard. Mater., 2019, 362(1):187-195. |
43 | GUPTA R S, CHANDER P, GEORGE S. Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. Nov [J]. Antonie Van Leeuwenhoek, 2013, 103(1):99-119. |
44 | TAJ Z Z, RAJKUMAR M. Perspectives of Plant Growth-promoting Actinomycetes in Heavy Metal Phytoremediation [M]. Singapore: Plant Growth Promoting Actinobacteria, Springer, 2016:213-231. |
45 | CÁLIZ J, MONTSERRAT G, MARTÍ E, et al.. Emerging resistant microbiota from an acidic soil exposed to toxicity of Cr, Cd and Pb is mainly influenced by the bioavailability of these metals [J]. J. Soils Sediment., 2013, 13(2):413-428. |
46 | BARNS S M, CAIN E C, SOMMERVILLE L, et al.. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum [J]. Appl. Environ. Microbiol., 2007, 73(9):3113-3116. |
47 | YAN S, ZHAO J, REN T, et al.. Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers [J/OL]. Ind. Crops Prod., 2020, 151:112454 [2022-12-20]. . |
48 | YAN K R, ZHANG Y H, YANG C B, et al.. First report of sweet potato feathery mottle virus infecting Chrysanthemum morifolium in China [J]. Plant Dis., 2020, 104(12):3273-3273. |
49 | BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G A. Keystone taxa as drivers of microbiome structure and functioning [J]. Nat. Rev. Microbiol., 2018, 16(9):567-576. |
50 | AL-SADI A M, AL-KHATRI B, NASEHI A, et al.. High fungal diversity and dominance by ascomycota in dam reservoir soils of arid climates [J]. Int. J. Agric. Biol., 2017, 19(4):682-688. |
51 | AL-SADI A M, AL-MAZROUI S S, PHILLIPS A J L. Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers [J]. J. Appl. Microbiol., 2015, 119(2):500-509. |
52 | CHALLACOMBE J F, HESSE C N, BRAMER L M, et al.. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis [J/OL]. BMC Genomics, 2019, 20(1):976 [2022-12-20]. . |
53 | LIN Y B, YE Y M, HU Y M, et al.. The variation in microbial community structure under different heavy metal contamination levels in paddy soils [J]. Ecotoxicol. Environ. Saf., 2019, 180(9):557-564. |
54 | SANCHEZ-CASTRO I, GIANINAZZI-PEARSON V, CLEYET-MAREL J C, et al.. Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site [J]. Sci. Total Environ., 2017, 598(11):121-128. |
55 | TIAN T, CHEN Z Q, TIAN Y Q, et al.. Microbial diversity in solar greenhouse soils in Round-Bohai Bay-Region, China: the influence of cultivation year and environmental condition [J]. Environ. Sci. Pollut. Res., 2017, 24(29):23236-23249. |
56 | MIAO C P, MI Q L, QIAO X G, et al.. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens [J]. J. Ginseng Res., 2016, 40(2):127-134. |
57 | EZZOUHRI L, CASTRO E, MOYA M, et al.. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco [J]. Afr. J. Microbiol. Res., 2009, 3(2):35-48. |
58 | FRÖHLICH-NOWOISKY J, HILL T C J, PUMMER B G, et al.. Ice nucleation activity in the widespread soil fungus Mortierella alpina [J]. Biogeosciences, 2015, 12(4):1057-1071. |
[1] | Chenyang ZHANG, Minggang XU, Fei WANG, Ran LI, Nan SUN. Effects of Manure Application on Soybean Yield and Soil Nutrients in China [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 148-156. |
[2] | Caiyan DU, Haiyan LU, Yanzhu XIONG, Xi SUN, Xiumei SUN, Jixiong PU, Naiming ZHANG. Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Peach Growth and Soil Physical and Chemical Properties for Two Consecutive Years [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 165-175. |
[3] | Lu MENG, Jingwen FAN, Xinyu SAI, Lusheng ZENG, Xiangyun SONG, Dejie CUI. Effects of Lime on Soil Improvement and Plant Growth in Apple Orchards [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 197-204. |
[4] | Jia YAO, Jiaxin LIU, Yan SU, Xiaojuan SU. Effects of Combined Application of Tobacco Stem Biochar and Nitrogen Fertilizers on Corn Growth and Soil Properties in Seeding Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 140-151. |
[5] | Tingting NIE, Yiqiang DONG, Helong YANG, Asitaiken Julihaiti, Shijie ZHOU, Shazhou AN. Effects of Enclosure on Plant and Soil Stoichiometric Characteristics in an Artemisia Desert [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 178-187. |
[6] | Yunzhu ZHENG, Shuchen SUN. Effects of Straw Biochar and Straw on Soil Nutrients and Crop Yield in Wheat-Maize Rotation System [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 152-162. |
[7] | Chuang LU, Haitang HU, Yuan QIN, Heju HUAI, Cunjun LI. Delineating Management Zones in Spring Maize Field Based on UAV Multispectral Image [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 106-115. |
[8] | Kuiyuan CHEN, Hui LIU, Wei DING. Effect of Glyphosate on Soil Nutrient and the Functional Enzyme Activities in Soybean Fields [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 180-188. |
[9] | Zhenjia HE, Wangtao FAN, Yichun DU, Qilong WANG. Effects of Water and Fertilizer Coupling on the Physical and Chemical Properties of Rice Soil and Yield Based on Soil Organic Reconstruction [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 176-185. |
[10] | Lijuan HE, Zhongju MENG, Xiaohong DANG, Tao LYU. Effects of Planting Glycyrrhizauralensis on Mechanical Composition and Nutrients of Aeolian Sandy Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 169-176. |
[11] | Zhuwen LIU, Longfei YANG, Maolin LIU, Guotao JIA, Qian YAO, Yiqiong MA, Ting CUI, Xinling YANG, Yang CHEN, Liangkun CHENG. Effects of Different Soil Amendments on Soil Nutrients and Inherent Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 190-198. |
[12] | Min LI, Gangtie LI, Hongwu ZHANG, Jiahuan CHEN. Effects of Stubble on Soil Physical and Chemical Properties of Three Kinds of Protein Mulberry Forest [J]. Journal of Agricultural Science and Technology, 2022, 24(1): 172-182. |
[13] | PU Quanming1, YANG Peng1*, DENG Yuchuan2, XIANG Chengyong1, LIN Bangmin1, LIU Lisha1, SHI Songmei3, HE Zemin1, YONG Lei1. Effects of Different Fertilization Methods on Soil Enzyme Activity, Soil Nutrients and Quality of Spring Cabbage [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 130-139. |
[14] | YANG Jingjing, ZHANG Qingqing*, Tuerxunnayi·Reyimu, Amanula·Yimingniyazi, Xueretijiang·Maitinuri. Effects of Nomadic Grazing and Settled Grazing on the Diversity of Fungi Community in Seriphidium transiliense Desert Grassland [J]. Journal of Agricultural Science and Technology, 2020, 22(7): 166-173. |
[15] | YOU Fang-fang1, ZHAO Ming-qin1*, SUN Cui-hong1, CHEN Fa-yuan1, . Effects of Combined Application of Biochar and Different Fertilizers on Cadmium Content in Tobacco and Soil under Cadmium Stress [J]. Journal of Agricultural Science and Technology, 2016, 18(4): 115-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||