Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (6): 11-21.DOI: 10.13304/j.nykjdb.2024.0172
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Xinyue BAO1,2(), Hongmin CHEN3(
), Weiwei WANG2, Yimiao TANG2, Zhaofeng FANG2, Jinxiu MA2, Dezhou WANG2(
), Jinghong ZUO2(
), Zhanjun YAO1(
)
Received:
2024-03-07
Accepted:
2024-03-26
Online:
2024-06-15
Published:
2024-06-12
Contact:
Dezhou WANG,Jinghong ZUO,Zhanjun YAO
鲍新跃1,2(), 陈红敏3(
), 王伟伟2, 唐益苗2, 房兆峰2, 马锦绣2, 汪德州2(
), 左静红2(
), 姚占军1(
)
通讯作者:
汪德州,左静红,姚占军
作者简介:
鲍新跃E-mail:1772145342@qq.com基金资助:
CLC Number:
Xinyue BAO, Hongmin CHEN, Weiwei WANG, Yimiao TANG, Zhaofeng FANG, Jinxiu MA, Dezhou WANG, Jinghong ZUO, Zhanjun YAO. Cloning and Expression Analysis of Wheat TaCOBL-5 Genes[J]. Journal of Agricultural Science and Technology, 2024, 26(6): 11-21.
鲍新跃, 陈红敏, 王伟伟, 唐益苗, 房兆峰, 马锦绣, 汪德州, 左静红, 姚占军. 小麦TaCOBL-5基因克隆及表达分析[J]. 中国农业科技导报, 2024, 26(6): 11-21.
引物名称 Primer name | 正向引物序列 Forward primer sequence (3’-5’) | 反向引物序列 Reverse primer sequence (3’-5’) |
---|---|---|
TaCOBL-5A | GCGGCACCCGTGTCTTCTAT | CGTCTCGTCTCGTCGCAGTA |
TaCOBL-5B | GCGGCACCCATGTCTTCTAT | CGTCTCGTCTCGTCGCAGTA |
TaCOBL-5D | ACGGCACCCGCGTCTTCTAT | TCTCGTCGCTGTAAAAACTG |
qTaCOBL-5A | CGTTGGATCTCTCTTGCAGC | TGGGATGGTCATGGGCAAAG |
qTaCOBL-5B | GATTACGTGCAGGTTACATTCC | TCTCAAGGCTCCAGGTCAGG |
qTaCOBL-5D | CAGCGAATCATAAGCCTCTG | GAGTAGCGGGGCAGGAAATG |
TaActin | GGAATCCATGAGACCACCTAC | GACCCAGACAACTCGCAAC |
Table 1 Primers used in this study for gene cloning and qPCR
引物名称 Primer name | 正向引物序列 Forward primer sequence (3’-5’) | 反向引物序列 Reverse primer sequence (3’-5’) |
---|---|---|
TaCOBL-5A | GCGGCACCCGTGTCTTCTAT | CGTCTCGTCTCGTCGCAGTA |
TaCOBL-5B | GCGGCACCCATGTCTTCTAT | CGTCTCGTCTCGTCGCAGTA |
TaCOBL-5D | ACGGCACCCGCGTCTTCTAT | TCTCGTCGCTGTAAAAACTG |
qTaCOBL-5A | CGTTGGATCTCTCTTGCAGC | TGGGATGGTCATGGGCAAAG |
qTaCOBL-5B | GATTACGTGCAGGTTACATTCC | TCTCAAGGCTCCAGGTCAGG |
qTaCOBL-5D | CAGCGAATCATAAGCCTCTG | GAGTAGCGGGGCAGGAAATG |
TaActin | GGAATCCATGAGACCACCTAC | GACCCAGACAACTCGCAAC |
基因 Gene | 基因号 Gene ID number | 物理位置 Physical position/bp | 分子量 Molecular weight/Da | 等电点 pI | 蛋白长度 Protein length/aa | 预测定位 Predicted location |
---|---|---|---|---|---|---|
TaCOBL-5A | TraesCS5A02G392000 | 588 375 577~588 379 139 | 50 867.2 | 8.98 | 457 | 细胞膜Cell membrane |
TaCOBL-5B | TraesCS5B02G396900 | 574 675 118~574 678 654 | 50 841.18 | 8.98 | 457 | 细胞膜Cell membrane |
TaCOBL-5D | TraesCS5D02G401900 | 467 600 940~467 604 428 | 50 823.15 | 8.98 | 457 | 细胞膜Cell membrane |
Table. 2 TaCOBL-5 gene information and physicochemical properties analysis
基因 Gene | 基因号 Gene ID number | 物理位置 Physical position/bp | 分子量 Molecular weight/Da | 等电点 pI | 蛋白长度 Protein length/aa | 预测定位 Predicted location |
---|---|---|---|---|---|---|
TaCOBL-5A | TraesCS5A02G392000 | 588 375 577~588 379 139 | 50 867.2 | 8.98 | 457 | 细胞膜Cell membrane |
TaCOBL-5B | TraesCS5B02G396900 | 574 675 118~574 678 654 | 50 841.18 | 8.98 | 457 | 细胞膜Cell membrane |
TaCOBL-5D | TraesCS5D02G401900 | 467 600 940~467 604 428 | 50 823.15 | 8.98 | 457 | 细胞膜Cell membrane |
Fig. 1 Analysis of gene structure, conserved motif and cis-acting regulatory elements of TaCOBL-5A: Gene structure; B: Conserved motif; C: Cis-acting regulatory elements
Fig. 5 Prediction putative networks of wheat miRNAs and the interacting proteinsA: Putative network of wheat miRNAs; B: Network of interacting proteins
1 | ZHU J K. Salt and drought stress signal transduction in plants [J]. Annu. Rev. Plant Biol., 2002, 53(1):247-273. |
2 | 陈翔,胡雨喆,陈甜甜,等.小麦抗低温逆境化控技术研究进展[J].植物营养与肥料学报, 2023, 29(8):1543-1555. |
CHEN X, HU Y Z, CHEN T T, et al.. Progress of chemical regulation on wheat resistance to low temperature stress [J]. J. Plant Nutr. Fert., 2023, 29(8):1543-1555. | |
3 | WINFIELD M O, LU C G, WILSON I D, et al.. Plant responses to cold: transcriptome analysis of wheat [J]. Plant Biotechnol. J., 2010, 8(7):749-771. |
4 | MAO H D, JIAN C, CHENG X X, et al.. The wheat ABA receptor gene TaPYL1-1B contributes to drought tolerance and grain yield by increasing water-use efficiency [J]. Plant Biotechnol. J., 2022, 20(5):846-861. |
5 | 温辉芹,程天灵,裴自友,等.山西中部区试小麦品种抗旱节水指标分析[J].山西农业科学,2020,48(10):1572-1575. |
WEN H Q, CHENG T L, PEI Z Y, et al.. Analysis on drought resistance and water saving indexes of wheat varieties of regional trial in central Shanxi [J]. J. Shanxi Agric. Sci., 2020, 48(10):1572-1575. | |
6 | 健康,倪建平.植物非生物胁迫信号转导及应答[J].中国稻米, 2016, 22(6):52-60. |
ZHU J K, NI J P. Abiotic stress signaling and responses in plants [J]. China Rice, 2016, 22(6):52-60. | |
7 | 盛松柏,田菊,庞晓明.冬枣COBRA基因家族全基因组鉴定及表达分析[J].分子植物育种, 2018, 16(1):61-68. |
SHENG S B, TIAN J, PANG X M. Genome-wide identification and expression analysis of COBRA gene family in Ziziphus jujuba [J]. Mol. Plant Breeding, 2018, 16(1):61-68. | |
8 | SUN X M, XIONG H Y, JIANG C H, et al.. Natural variation of DROT1 confers drought adaptation in upland rice [J/OL]. Nat. Commun., 2022, 13(1):4265 [2024-04-03].. |
9 | LI Y H, QIAN O, ZHOU Y H, et al.. BRITTLE CULM1, which encodes a COBRA-like protein, affects the mechanical properties of rice plants [J]. Plant Cell, 2003, 15(9):2020-2031. |
10 | BRADY S M, SONG S, DHUGGA K S, et al.. Combining expression and comparative evolutionary analysis. The COBRA gene family [J]. Plant Physiol., 2007, 143(1):172-187. |
11 | JULIUS B T, MCCUBBIN T J, MERTZ R A, et al.. Maize Brittle Stalk2-Like3, encoding a COBRA protein, functions in cell wall formation and carbohydrate partitioning [J]. Plant Cell, 2021, 33(10):3348-3366. |
12 | AHMED M Z, ALQAHTANI A S, NASR F A, et al.. Comprehensive analysis of the COBRA-like (COBL) gene family through whole-genome analysis of land plants [J]. Genet. Resour. Crop Evol., 2024, 71(1):863-872. |
13 | QIU C, CHEN J H, WU W H, et al.. Genome-wide analysis and abiotic stress-responsive patterns of COBRA-like gene family in Liriodendron chinense [J/OL]. Plants-Basel, 2023, 12(8):1616 [2024-04-03]. . |
14 | BEN-TOV D, ABRAHAM Y, STAV S, et al.. COBRA-LIKE2, a member of the glycosylphosphatidylinositol-anchored COBRA-LIKE family, plays a role in cellulose deposition in Arabidopsis seed coat mucilage secretory cells [J]. Plant Physiol., 2015, 167(3):711-724. |
15 | LIU F F, WAN Y X, CAO W X, et al.. Novel function of a putative TaCOBL ortholog associated with cold response [J]. Mol. Biol. Rep., 2023, 50(5):4375-4384. |
16 | LIU L F, SHANG-GUAN K K, ZHANG B C, et al.. Brittle Culm1, a COBRA-Like protein, functions in cellulose assembly through binding cellulose microfibrils [J/OL]. PLoS Genet., 2013, 9(8):e1003704 [2024-04-03]. . |
17 | YE X, KANG B G, OSBURN D L, et al.. The COBRA gene family in Populus and gene expression in vegetative organs and in response to hormones and environmental stresses [J]. Plant Growth Regul., 2009, 58(2):211-223. |
18 | ZHANG D Q, YANG X H, ZHANG Z Y, et al.. Expression and nucleotide diversity of the poplar COBL gene [J]. Tree Genet. Genomes, 2010, 6(2):331-344. |
19 | YILAN E, XIN G, JING X, et al.. Genome-wide identification of the COBRA-like gene family in Pinus tabuliformis and the role of PtCOBL12 in the regulation of cellulose biosynthesis [J]. Ind. Crop Prod., 2023, 203. |
20 | YANG Q, WANG S, CHEN H, et al.. Genome-wide identification and expression profiling of the COBRA-like genes reveal likely roles in stem strength in rapeseed (Brassica napus L.) [J/OL]. PLoS One, 2021,16(11):e0260268 [2024-04-03]. . |
21 | NIU E L, SHANG X G, CHENG C Z, et al.. Comprehensive analysis of the COBRA-Like (COBL) gene family in Gossypium identifies two COBLs potentially associated with fiber quality [J/OL]. PLoS One, 2015, 10(12):e014572 [2024-04-03]. . |
22 | SANGI S, ARAÚJO PAULA M, COELHO F S, et al.. Genome-wide analysis of the COBRA-Like gene family supports gene expansion through whole-genome duplication in soybean (Glycine max) [J]. Plants, 2021, 10 (1):167-167. |
23 | XU L, WANG D Z, LIU S, et al.. Comprehensive atlas of wheat (Triticum aestivum L.) AUXIN RESPONSE FACTOR expression during male reproductive development and abiotic stress [J/OL]. Front. Plant Sci., 2020, 11:586144 [2024-04-03]. . |
24 | 吴凯铭.337份小麦品种(系)萌发期抗旱性鉴定及生理响应[D].杨凌:西北农林科技大学,2022. |
WU K M. Identification of drought resistance and physiological response during germination in 337 wheat varieties (lines) [D]. Yangling: Northwest A&F University, 2022. | |
25 | 史冰新.黄淮和长江中下游冬麦区小麦耐热种质资源筛选[D].杨凌:西北农林科技大学,2023. |
SHI B X. Screened for heat tolerance of wheat germplasm resources in the Yellow and Huai River valley winter wheat zone and the middle and lower Yangtze valley winter wheat zone [D]. Yangling: Northwest A&F University, 2023. | |
26 | KESAWAT M S, KHERAWAT B S, SINGH A, et al.. Genome-wide identification and characterization of the Brassinazole-resistant (BZR) gene family and its expression in the various developmental stage and stress conditions in wheat (Triticum aestivum L.) [J]. Int. J. Mol. Sci., 2021, 22(16):8743-8743. |
27 | FANG Y J, ZHENG Y Q, LU W, et al.. Roles of miR319-regulated TCPs in plant development and response to abiotic stress [J]. Crop J., 2021, 9(1):17-28. |
28 | JIAN C, HAO P A, HAO C Y, et al.. The miR319/TaGAMYB3 module regulates plant architecture and improves grain yield in common wheat (Triticum aestivum) [J]. New Phytol., 2022, 235(4):1515-1530. |
29 | 梁婷,左静红,陆青,等.小麦IQM基因家族鉴定及非生物胁迫下表达分析[J].中国农业科技导报, 2023, 25(2):27-37. |
LIANG T, LU Q, ZUO J Het al.. Identification and expression analysis under abiotic stress of IQM gene family in wheat (Triticum aestivum L.) [J]. J. Agric. Sci. Technol., 2023, 25(2):27-37. | |
30 | 陆青,梁婷,汪德州,等.小麦热激蛋白基因TaHSP90-1的克隆与表达分析[J].中国农业科技导报, 2022, 24(8):44-54. |
LU Q, LIANG T, WANG D Zet al.. Cloning and expression analysis of wheat heat shock protein gene TaHSP90-1 [J]. J. Agric. Sci. Technol., 2022, 24(8):44-54. |
[1] | Yangyang DU, Yuanyuan BAO, Xiangyu LIU, Xinyong ZHANG. Effects of Tartary Buckwheat Rotation on Enzyme Activities and Microorganisms in Rhizosphere Soil of Cultivated Potato in Yunnan Province [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 192-200. |
[2] | Mingdi CHEN, Guihua HU, Haiwen ZHANG, Wangtian WANG. Bioinformatics and Expression Pattern Analysis of Rice RR Gene Family [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 20-29. |
[3] | Gang ZHAO, Shuying WANG, Shangzhong LI, Jianjun ZHANG, Yi DANG, Lei WANG, Xingmao LI, Wanli CHENG, Gang ZHOU, Shengli NI, Tinglu FAN. Effects of Precipitation on Yield and Water Consumption of Winter Wheat in Loess Plateau in Recent 40 Years [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 164-173. |
[4] | Hong ZHANG, Weiguo LI, Xiaodong ZHANG, Bihui LU, Chengcheng ZHANG, Wei LI, Tinghuai MA. Extraction of Winter Wheat Planting Area Based on Fusion Features of HJ-1 and GF-1 Image [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 109-119. |
[5] | Jingyun ZHANG, Feng GUAN, Bo SHI, Xinjian WAN. Effects of Wheat Root Exudates on Bitter Gourd Seeding Growth and Soil Environment [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 181-190. |
[6] | Shuang LI, Aiying WANG, Zhen JIAO, Qing CHI, Hao SUN, Tao JIAO. Physiological and Chemical Characteristics and Transcriptome Analysis of Different Type of Wheat Seedlings Under Salt Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 20-32. |
[7] | Yan JIN, Quanhao SONG, Jiajing SONG, Liang CHEN, Lishang ZHAO, Jie CHEN, Dong BAI, Tongquan ZHU. Comprehensive Evaluation of 69 Wheat Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 33-45. |
[8] | Bo LIU, Wangtian WANG, Li MA, Junyan WU, Yuanyuan PU, Lijun LIU, Yan FANG, Wancang SUN, Yan ZHANG, Ruimin LIU, Xiucun ZENG. Identification and Characterization of IPT Gene Family in Brassica rapa L. [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 56-66. |
[9] | Yunhong WANG, Qi MIAO, Junchao LI, Hongye WANG, Jishi ZHANG, Zhenling CUI. Effect of Comprehensive Management Measures on Productivity of Medium and Low Yield Farmland in Coastal Saline Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 163-172. |
[10] | Yanfei FANG, Xiaoying LUO, Jianghua TANG, Tingting SUN, Luzhen WANG, Tian TANG, Wenxiu XU. Effects of Sowing Methods on Yield, Dry Matter and Water Use Efficiency of Spring Wheat in Dryland [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 173-181. |
[11] | Yurong DENG, Lian HAN, Jinlong WANG, Xinghan WEI, Xudong WANG, Ying ZHAO, Xiaohong WEI, Chaozhou LI. Identification of SOD Family Genes in Chenopodium quinoa and Their Response to Mixed Saline-alkali Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(1): 28-39. |
[12] | Xuemin JIANG, Xiangqian CHEN, Hongyan LI, Qiyan JIANG. Metabolomic Analysis of Wheat Response to Salt Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 43-56. |
[13] | Mingyu ZHAO, Hao JIA, Xiaoyu SHI, Yi PAN, Yuyun HUANG, Kaicheng WANG, Qingquan CHU. Distribution of Winter Wheat Water Footprint in Huang-Huai-Hai Farming Region in Recent 30 Years [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 138-147. |
[14] | Feifan HOU, Xiaowen ZHANG, Jiaqi WANG, Jianzhen ZHANG, Kaiquan LI, Xuebin YIN. Effect of Selenium Fertilizer Application Position on Physiological Characters and Selenium Accumulation in Wheat [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 144-152. |
[15] | Chen CHEN, Ke SHI, Changwei ZHU, Guiying JIANG, Lan LUO, Weiwei MENG, Fang LIU, Fengmin SHEN, Shiliang LIU. Effects of Planting Density and Nitrogen Application Rate on Wheat Photosynthetic Characteristics, Yield, and Soil Nitrogen Content in Fluvo-aquic Soil in Northern Henan Province [J]. Journal of Agricultural Science and Technology, 2023, 25(5): 24-33. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||