Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (5): 158-167.DOI: 10.13304/j.nykjdb.2022.0931
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Jingwen QIANG1(), Wanqing WANG1,2, Manyu TANG1, Shuang WU1,2, Wei HUA1,2, Xinyue ZHU1, Yanling CHENG1,2()
Received:
2022-10-29
Accepted:
2023-01-03
Online:
2023-05-20
Published:
2023-07-13
Contact:
Yanling CHENG
强敬雯1(), 王晚晴1,2, 唐曼玉1, 武双1,2, 华威1,2, 朱欣悦1, 程艳玲1,2()
通讯作者:
程艳玲
作者简介:
强敬雯 E-mail:1275578042@qq.com;
基金资助:
CLC Number:
Jingwen QIANG, Wanqing WANG, Manyu TANG, Shuang WU, Wei HUA, Xinyue ZHU, Yanling CHENG. Research Progress on Frass After Organic Waste Transformation by Black Soldier Fly[J]. Journal of Agricultural Science and Technology, 2023, 25(5): 158-167.
强敬雯, 王晚晴, 唐曼玉, 武双, 华威, 朱欣悦, 程艳玲. 黑水虻虫沙在肥料应用中的研究进展[J]. 中国农业科技导报, 2023, 25(5): 158-167.
饲料基质 Food substrate | 底物消耗量 Material reduction/(% DM) | 虫沙产量 Frass yield/(kg DM) | 幼虫含量 Larval density/(·m-2) | 堆肥时间 Composting time/d |
---|---|---|---|---|
家庭厨余垃圾Household food waste | 79.9 | 201 | 20 000 | 14 |
食堂垃圾Cateen waste | 37.9 | 621 | 2 000 | 9 |
水果和蔬菜Fruits and vegetables | 65.2 | 348 | 6 000 | 20 |
水果Fruits | 70.8 | 292 | 6 000 | 22 |
香蕉Bananas | 63.4 | 366 | 45 000 | 14 |
苹果Apples | 64.4 | 356 | 45 000 | 16 |
蔬菜废料Vegetable waste | 58.4 | 416 | 2 000 | 9 |
蘑菇Spent mushroom | 42.3 | 577 | — | 20 |
畜禽废弃物Poultry slaughterhouse waste | 30.7 | 693 | 18 000 | 13~14 |
鱼粪Fish waste | 57.6~70.1 | 229~424 | 45 000 | 11~18 |
鸡粪Chicken manure | 75.6 | 244 | 7 000 | — |
牛粪Cow manure | 34.4~48.8 | 512~656 | — | 19~20 |
农副产品废弃物 Agricultural byproducts waste | 56.4 | 436 | 2 000 | 9 |
啤酒厂废谷物Brewers spent grain | 53.0 | 470 | 6 000 | 22 |
酿造副产物Winery byproducts | 38.7 | 613 | — | 15 |
Table 1 Frass yield of BSFL fed with different organic wastes[13-18]
饲料基质 Food substrate | 底物消耗量 Material reduction/(% DM) | 虫沙产量 Frass yield/(kg DM) | 幼虫含量 Larval density/(·m-2) | 堆肥时间 Composting time/d |
---|---|---|---|---|
家庭厨余垃圾Household food waste | 79.9 | 201 | 20 000 | 14 |
食堂垃圾Cateen waste | 37.9 | 621 | 2 000 | 9 |
水果和蔬菜Fruits and vegetables | 65.2 | 348 | 6 000 | 20 |
水果Fruits | 70.8 | 292 | 6 000 | 22 |
香蕉Bananas | 63.4 | 366 | 45 000 | 14 |
苹果Apples | 64.4 | 356 | 45 000 | 16 |
蔬菜废料Vegetable waste | 58.4 | 416 | 2 000 | 9 |
蘑菇Spent mushroom | 42.3 | 577 | — | 20 |
畜禽废弃物Poultry slaughterhouse waste | 30.7 | 693 | 18 000 | 13~14 |
鱼粪Fish waste | 57.6~70.1 | 229~424 | 45 000 | 11~18 |
鸡粪Chicken manure | 75.6 | 244 | 7 000 | — |
牛粪Cow manure | 34.4~48.8 | 512~656 | — | 19~20 |
农副产品废弃物 Agricultural byproducts waste | 56.4 | 436 | 2 000 | 9 |
啤酒厂废谷物Brewers spent grain | 53.0 | 470 | 6 000 | 22 |
酿造副产物Winery byproducts | 38.7 | 613 | — | 15 |
化学属性 Chemical properties | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指标 Index | 碳 C/% | 氮 N/% | 磷 P/% | 钾K/% | 钙Ca/ (g·kg-1) | 镁Mg/ (g·kg-1) | 钠Na/ (g·kg-1) | 铁Fe/ (mg·kg-1) | 铜Cu/ (mg·kg-1) | 锰Mn/ (mg·kg-1) | 锌Zn/ (mg·kg-1) | pH | 碳氮比 C/N |
啤酒厂废谷物 Brewery spent grain | 38.6 | 3.6 | 0.5 | 0.3 | 9.7 | 1.0 | — | 310.0 | 25.0 | 109.0 | 182.0 | 7.3 | 10.7 |
酒糟 Distiller’s grains | — | 3.4 | 0.8 | 1.1 | 13.0 | 3.0 | 5.0 | 125.0 | 15.0 | 45.0 | 90.0 | — | — |
豆渣和麦麸 Okara and wheat bran | 37.1 | 4.8 | 1.0 | 0.9 | 1.3 | 0.1 | — | 26.0 | 2.2 | 4.2 | 0.1 | 7.5 | 7.7 |
湿豆渣Fresh okara | 37.1 | 5.1 | 0.3 | 1.9 | 16.8 | 10.5 | — | 3.7 | 0.9 | 0.2 | 1.7 | 7.3 | 7.3 |
麦麸Wheat bran | 35.7 | 2.8 | 1.4 | 2.3 | — | 0.3 | — | 15.0 | 8.9 | 19.4 | 15.0 | 6.8 | 16.0 |
生活垃圾 Household waste | 35.8 | 2.2 | 0.5 | 0.7 | 10.0 | 0.9 | 0.8 | 240.0 | 10.0 | 10.0 | 10.0 | 7.4 | 16.6 |
鸡饲料 Chicken feed | 47.9 | 2.6 | — | — | — | — | — | — | — | — | — | 6.2 | 18.5 |
鸡粪 Chicken manure | 23.6 | 2.3 | 1.1 | 1.8 | — | — | — | — | — | — | — | 8.0 | 16.4 |
猪粪Pig manure | 26.8 | 2.4 | 2.1 | 1.0 | — | — | — | — | — | — | — | 8.7 | 17.6 |
牛粪Cow manure | 27.7 | 1.9 | 1.0 | 0.2 | — | — | — | — | — | — | — | 8.4 | 15.1 |
水果和蔬菜 Fruits and vegetables | 48.8 | 1.8 | — | — | — | — | — | — | — | — | — | 5.6 | 16.6 |
蔬菜Vegetables | 38.7 | 2.8 | 1.5 | 3.3 | 15.0 | 7.0 | 0.3 | 896.0 | 19.0 | 149.0 | 137.0 | 8.6 | 13.8 |
平均Average | 36.6 | 2.9 | 1.6 | 2.4 | 11.6 | 3.7 | 2.3 | 249.1 | 14.2 | 42.4 | 64.0 | 7.5 | 14.5 |
中位数Median | 36.5 | 2.8 | 1.1 | 1.5 | 9.9 | 1.0 | 2.6 | 125.0 | 10.0 | 14.7 | 15.0 | 7.6 | 15.6 |
Table 2 Chemical attributes of frass derived from BSFL with different organic wastes[67]
化学属性 Chemical properties | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
指标 Index | 碳 C/% | 氮 N/% | 磷 P/% | 钾K/% | 钙Ca/ (g·kg-1) | 镁Mg/ (g·kg-1) | 钠Na/ (g·kg-1) | 铁Fe/ (mg·kg-1) | 铜Cu/ (mg·kg-1) | 锰Mn/ (mg·kg-1) | 锌Zn/ (mg·kg-1) | pH | 碳氮比 C/N |
啤酒厂废谷物 Brewery spent grain | 38.6 | 3.6 | 0.5 | 0.3 | 9.7 | 1.0 | — | 310.0 | 25.0 | 109.0 | 182.0 | 7.3 | 10.7 |
酒糟 Distiller’s grains | — | 3.4 | 0.8 | 1.1 | 13.0 | 3.0 | 5.0 | 125.0 | 15.0 | 45.0 | 90.0 | — | — |
豆渣和麦麸 Okara and wheat bran | 37.1 | 4.8 | 1.0 | 0.9 | 1.3 | 0.1 | — | 26.0 | 2.2 | 4.2 | 0.1 | 7.5 | 7.7 |
湿豆渣Fresh okara | 37.1 | 5.1 | 0.3 | 1.9 | 16.8 | 10.5 | — | 3.7 | 0.9 | 0.2 | 1.7 | 7.3 | 7.3 |
麦麸Wheat bran | 35.7 | 2.8 | 1.4 | 2.3 | — | 0.3 | — | 15.0 | 8.9 | 19.4 | 15.0 | 6.8 | 16.0 |
生活垃圾 Household waste | 35.8 | 2.2 | 0.5 | 0.7 | 10.0 | 0.9 | 0.8 | 240.0 | 10.0 | 10.0 | 10.0 | 7.4 | 16.6 |
鸡饲料 Chicken feed | 47.9 | 2.6 | — | — | — | — | — | — | — | — | — | 6.2 | 18.5 |
鸡粪 Chicken manure | 23.6 | 2.3 | 1.1 | 1.8 | — | — | — | — | — | — | — | 8.0 | 16.4 |
猪粪Pig manure | 26.8 | 2.4 | 2.1 | 1.0 | — | — | — | — | — | — | — | 8.7 | 17.6 |
牛粪Cow manure | 27.7 | 1.9 | 1.0 | 0.2 | — | — | — | — | — | — | — | 8.4 | 15.1 |
水果和蔬菜 Fruits and vegetables | 48.8 | 1.8 | — | — | — | — | — | — | — | — | — | 5.6 | 16.6 |
蔬菜Vegetables | 38.7 | 2.8 | 1.5 | 3.3 | 15.0 | 7.0 | 0.3 | 896.0 | 19.0 | 149.0 | 137.0 | 8.6 | 13.8 |
平均Average | 36.6 | 2.9 | 1.6 | 2.4 | 11.6 | 3.7 | 2.3 | 249.1 | 14.2 | 42.4 | 64.0 | 7.5 | 14.5 |
中位数Median | 36.5 | 2.8 | 1.1 | 1.5 | 9.9 | 1.0 | 2.6 | 125.0 | 10.0 | 14.7 | 15.0 | 7.6 | 15.6 |
1 | 张青青,陈平,李跃忠,等.有机废弃物沼渣资源化利用现状及发展趋势[J].园林,2020(6):2-7. |
ZHANG Q Q, CHEN P, LI Y Z, et al.. Present situation and development trend of biogas residue resource utilization [J]. Landscape Architecture Academic J., 2020(6):2-7. | |
2 | KODA E, MISZKOWSKA A, SIECZKA A. Levels of organic pollution indicators in groundwater at the old landfill and waste management site [J/OL]. Appl. Sci., 2017, 7(6): 638 [2022-09-28]. . |
3 | AHMAD S, IQBAL N, JAMIL F, et al.. Optimal policy-making for municipal waste management based on predictive model optimization [J]. IEEE Access, 2020, 8: 218458-218469. |
4 | 王成成,贾昭炎,刘洋,等.黑水虻转化有机生活废弃物相关研究进展[J].生物加工过程,2021,19(4):432-439. |
WANG C C, JIA Z Y, LIU Y, et al.. Progress in transformation of organic domestic waste by black soldier fly [J]. Chin. J. Bioprocess Eng., 2021,19(4):432-439. | |
5 | BEESIGAMUKAMA D, MOCHOGE B, KORIR N, et al.. Nitrogen fertilizer equivalence of black soldier fly frass fertilizer and synchrony of nitrogen mineralization for maize production [J/OL]. Agronomy, 2020, 10(9): 1395 [2022-09-28]. . |
6 | SALOMONE R, SAIJA G, MONDELLO G, et al.. Environmental impact of food waste bioconversion by insects: application of life cycle assessment to process using Hermetia illucens [J]. J. Clean. Prod., 2017, 140: 890-905. |
7 | 刘涛.黑水虻联合好氧堆肥对畜禽粪便无害化及资源化的研究[D]. 咸阳:西北农林科技大学,2022. |
LIU T. The sanitation and resource of livestock manure during black soldier fly larvae conversion combined with composting [D]. Xianyang: Northwest A&F University, 2022. | |
8 | MERTENAT A, DIENER S, ZURBRUGG C. Black soldier fly biowaste treatment-assessment of global warming potential [J]. Waste Manage., 2019, 84: 173-181. |
9 | SURENDRA K C, TOMBERLIN J K, HUIS A, et al.. Rethinking organic wastes bioconversion: evaluating the potential of the black soldier fly (Hermetia illucens (L.))(Diptera: Stratiomyidae)(BSF) [J]. Waste Manage., 2020, 117: 58-80. |
10 | LOPES I G, LALANDER C, VIDOTTI R M, et al.. Using Hermetia illucens larvae to process biowaste from aquaculture production [J/OL]. J. Clean. Prod., 2020, 251: 119753 [2022-09-28]. . |
11 | FIDJELAND J, NORDIN A, VINNERAS B. Inactivation of Ascaris eggs and Salmonella spp. in fecal sludge by treatment with urea and ammonia solution [J]. J. Water Sanit. Hyg. Dev., 2016, 6(3): 465-473. |
12 | PANG W, HOU D, CHEN J, et al.. Reducing greenhouse gas emissions and enhancing carbon and nitrogen conversion in food wastes by the black soldier fly [J/OL]. J. Environ. Manage., 2020, 260: 110066 [2022-09-28]. . |
13 | CHEN J, HOU D, PANG W, et al.. Effect of moisture content on greenhouse gas and NH3 emissions from pig manure converted by black soldier fly [J/OL]. Sci. Total Environ., 2019, 697: 133840 [2022-09-28]. . |
14 | PARODI A, BOER M, GERRITS J, et al.. Bioconversion efficiencies, greenhouse gas and ammonia emissions during black soldier fly rearing-a mass balance approach [J/OL]. J. Clean. Prod., 2020, 271: 122488 [2022-09-28]. . |
15 | 沈礼晨,叶小梅,孔祥平,等.不同投料方式对黑水虻幼虫生长性能的影响[J].环境昆虫学报,2022,44(5): 1271-1277. |
SHEN L C, YE X M, KONG X P, et al.. Effects of different feeding methods on the growth performance of black soldier fly, Hermetia illucens (Diptera: Strationyidae) [J]. J. Environ. Entomol., 2022,44(5): 1271-1277. | |
16 | GUO H, JIANG C, ZHANG Z, et al.. Material flow analysis and life cycle assessment of food waste bioconversion by black soldier fly larvae (Hermetia illucens L.) [J/OL]. Sci. Total Environ., 2021, 750: 141656 [2022-09-28]. . |
17 | 李庆,秦文杰,曹秀芳,等.基于黑水虻转化的畜禽粪便资源化利用研究进展[J].华中农业大学学报,2022,41(6): 169-175. |
LI Q, QIN W J, CAO X F, et al.. Research progress on resource utilization of livestock and poultry manure based on transformation by black soldier fly [J]. J. Huazhong Agric. Univ., 2022,41(6): 169-175. | |
18 | GOLD M, EGGER J, SCHEIDEGGER A, et al.. Estimating black soldier fly larvae biowaste conversion performance by simulation of midgut digestion [J]. Waste Manage., 2020, 112: 40-51. |
19 | LALANDER C, DIENER S, ZURBRUGG C, et al.. Effects of feedstock on larval development and process efficiency in waste treatment with black soldier fly (Hermetia illucens) [J]. J. Clean. Prod., 2019, 208: 211-219. |
20 | SETTI L, FRANCIA E, PULVIRENTI A, et al.. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media [J]. Waste Manage., 2019, 95: 278-288. |
21 | KLAMMSTEINER T, TURAN V, FERNANDEZ M, et al.. Suitability of black soldier fly frass as soil amendment and implication for organic waste hygienization [J/OL]. Agronomy, 2020, 10(10): 1578[2022-09-28]. . |
22 | 陈江珊.水虻转化农业有机废弃物过程中氮素形态及转化效率研究[D]. 武汉:华中农业大学, 2021. |
CHEN J S. The reaearch on nitrogen forms and coversion efficiency of agricultural organic wastes by black soldier fly [D]. Wuhan: Huazhong Agricultural University, 2021. | |
23 | 路延.黑水虻转化厨余垃圾中环境及微生物条件研究[D]. 大连:大连理工大学,2021. |
LU Y. Study on environmental and microbial conditions of food waste transformed by black soldier fly [D]. Dalian: Dalian University of Technology, 2021. | |
24 | PALMA L, FERNANDE J, PUTRI F, et al.. Almond by‐product composition impacts the rearing of black soldier fly larvae and quality of the spent substrate as a soil amendment [J]. J. Sci. Food Agric., 2020, 100(12): 4618-4626. |
25 | SARPONG D, ODURO-KWARTENG S, GYASI F, et al.. Biodegradation by composting of municipal organic solid waste into organic fertilizer using the black soldier fly (Hermetia illucens)(Diptera: Stratiomyidae) larvae [J]. Int. J. Recycling Organic Waste Agric., 2019, 8(1): 45-54. |
26 | SONG S, EE L, TAN N, et al.. Upcycling food waste using black soldier fly larvae: effects of further composting on frass quality, fertilising effect and its global warming potential [J/OL]. J. Clean. Prod., 2021, 288: 125664 [2022-09-28]. . |
27 | BEESIGAMUKAMA D, MOCHOGE B, KORIR K, et al.. Exploring black soldier fly frass as novel fertilizer for improved growth, yield, and nitrogen use efficiency of maize under field conditions [J/OL]. Front Plant Sci., 2020, 11: 574592 [2022-09-28]. . |
28 | 张兰霞,杜巍,王岩,等.不同碳源农林废弃物与厨余垃圾协同堆肥腐熟度和臭气排放研究[J/OL].环境工程,2022[2022-09-28].. |
ZHANG L X, DU W, WANG Y, et al.. The maturity and odor gas emissions during co-composting of kitchen waste and agricultural and forestry wastes with high carbon source [J/OL]. Environ. Eng., 2022 [2022-09-28].. | |
29 | ALATTAR A, ALATTAR N, POPA R. Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays) [J]. Plant Sci. Today, 2016, 3(1): 57-62. |
30 | LIU T, AWASTHI K, CHEN H, et al.. Performance of black soldier fly larvae (Diptera: Stratiomyidae) for manure composting and production of cleaner compost [J/OL]. J. Environ. Manage., 2019, 251: 109593[2022-09-28]. . |
31 | XIAO X P, MAZZA L, YU Y Q, et al.. Efficient co-conversion process of chicken manure into protein feed and organic fertilizer by Hermetia illucens L.(Diptera: Stratiomyidae) larvae and functional bacteria [J]. J. Environ. Manage., 2018, 217: 668-676. |
32 | 马延旭,伊宏峰,夏烨,等.不同饲料配方对黑水虻幼虫生长发育的影响[J].特种经济动植物,2021,24(3):8-9. |
33 | BEESIGAMUKAMA D, MOCHOGE B, KORIR K, et al.. Low-cost technology for recycling agro-industrial waste into nutrient-rich organic fertilizer using black soldier fly [J]. Waste Manage., 2021, 119: 183-194. |
34 | 许梦,李旭,丁鸿弼,等.蚯蚓堆置对农业和城市有机废弃物堆肥产品腐熟度的影响[J].江苏农业科学,2015,43(6):356-359. |
35 | WANG Q, REN X, SUN Y, et al.. Improvement of the composition and humification of different animal manures by black soldier fly bioconversion [J/OL]. J. Clean. Prod., 2021, 278: 123397 [2022-09-28]. . |
36 | SHARMA S. Municipal solid waste management through vermicomposting employing exotic and local species of earthworms [J]. Bioresour. Technol., 2003, 90(2): 169-173. |
37 | PEREZ-MONTANO F, ALIAS-VILLEGAS C, BELLOGIN A, et al.. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production [J]. Microbiol. Res., 2014, 169(5-6): 325-336. |
38 | 邢力,张玉铭,胡春胜,等.长期不同养分循环再利用途径对农田土壤养分演替规律与培肥效果的影响研究[J].中国生态农业学报,2022,30(6):937-951. |
XING L, ZHANG Y M, HU C S, et al.. Effects of long-term nutrient recycling pathways on soil nutrient dynamics and fertility in farmland [J]. Chin. J. Eco-Agric., 2022, 30(6): 937-951. | |
39 | POVEDA J, JIMENEZ-GOMEZ A, SAATI-SANTAMARIA Z, et al.. Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants [J]. Appl. Soil Ecol., 2019, 142: 110-122. |
40 | PATHANIA P, RAJTA A, SINGH P C, et al.. Role of plant growth-promoting bacteria in sustainable agriculture [J/OL]. Biocatal. Agric. Biotechnol., 2020, 30: 101842 [2022-09-28]. . |
41 | LOPES I G, LALANDER C, VIDOTTII R M, et al.. Reduction of bacteria in relation to feeding regimes when treating aquaculture waste in fly larvae composting [J/OL]. Front. Microbiol., 2020, 11: 1616 [2022-09-28]. . |
42 | ERICKSON M C, ISLAM M, SHEPPARD C, et al.. Reduction of Escherichia coli O157: H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly [J]. J. Food Protect., 2004, 67(4): 685-690. |
43 | LYNCH H, ARGUELLO H, WALIA K, et al.. Evaluation of an alternative experimental infection method, which closely mimics the natural route of transmission of monophasic Salmonella Typhimurium in pigs [J]. Foodborne Pathog. Dis., 2017, 14(1): 23-28. |
44 | WYNANTS E, FROONINCKX L, CRAUWELS S, et al.. Assessing the microbiota of black soldier fly larvae (Hermetia illucens) reared on organic waste streams on four different locations at laboratory and large scale [J]. Microb. Ecol., 2019, 77(4): 913-930. |
45 | GOLD M, VON F, ZURBRUGG C, et al.. Identification of bacteria in two food waste black soldier fly larvae rearing residues [J/OL]. Front. Microbiol., 2020, 11: 582867[2022-09-28]. . |
46 | BOSCH G, VAN J, DE C, et al.. Aflatoxin B1 tolerance and accumulation in black soldier fly larvae (Hermetia illucens) and yellow mealworms (Tenebrio molitor) [J/OL]. Toxins, 2017, 9(6): 185[2022-09-28]. . |
47 | XU L, GEELEN D. Developing biostimulants from agro-food and industrial by-products [J/OL]. Front. Plant Sci., 2018, 9: 1567 [2022-09-28]. . |
48 | POVEDA J. Insect frass in the development of sustainable agriculture. a review [J/OL]. Agron. Sustain. Dev., 2021, 41(1): 656[2022-09-28]. . |
49 | LOPES I G, YONG H, LALANDER C. Frass derived from black soldier fly larvae treatment of biodegradable wastes. a critical review and future perspectives [J]. Waste Manage., 2022, 142: 65-76. |
50 | SCHMITT E, DEVRIES W. Potential benefits of using Hermetia illucens frass as a soil amendment on food production and for environmental impact reduction [J/OL]. Current Opinion Green Sustain. Chem., 2020, 25: 100335 [2022-09-28]. . |
51 | NARDI S, PIZZEGHELLO D, ERTANI A. Hormone-like activity of the soil organic matter [J]. Appl. Soil Ecol., 2018, 123: 517-520. |
52 | ANTONOV A, GORKIN A, PASTUKHOVA N, et al.. Application of a vermicomposter containing biostimulant for pine tapping [C/OL]//IOP Conference Series: Earth and Environmental Science. IOP Publishing, 2020, 421(2): 022068 [2022-09-28]. . |
53 | SOFO A, NUZZACI M, VITTI A, et al.. Control of biotic and abiotic stresses in cultivated plants by the use of biostimulant microorganisms[M]//Improvement of crops in the era of climatic changes. Springer, 2014: 107-117. |
54 | POVEDA J, GONZALEZ-ANDRES F. Bacillus as a source of phytohormones for use in agriculture [J]. Appl. Microbiol. Biot., 2021, 105(23): 8629-8645. |
55 | CHOI Y C, CHOI J Y, KIM J G, et al.. Potential usage of food waste as a natural fertilizer after digestion by Hermetia illucens (Diptera: Stratiomyidae) [J]. Int. J. Ind. Ergon., 2009, 19(1): 171-174. |
56 | CHIRERE T E S, KHALIL S, LALANDER C. Fertiliser effect on swiss chard of black soldier fly larvae-frass compost made from food waste and faeces [J]. J. Insects Food Feed., 2021, 7(4): 457-469. |
57 | QUILLIAM R S, NUKU-ADEKU C, MAQUART P, et al.. Integrating insect frass biofertilisers into sustainable peri-urban agro-food systems [J]. J. Insects Food Feed., 2020, 6(3): 315-322. |
58 | ALATTAR M A, ALATTAR F N, POPA R. Effects of microaerobic fermentation and black soldier fly larvae food scrap processing residues on the growth of corn plants (Zea mays) [J]. Plant Sci. Today, 2016, 3(1): 57-62. |
59 | GÄRTTLING D, KIRCHNER S M, SCHULZ H. Assessment of the N-and P-fertilization effect of black soldier fly (Diptera: Stratiomyidae) by-products on maize [J/OL]. J. Insect Sci., 2020, 20(5): 89 [2022-09-28]. . |
60 | HOUBEN D, DAOULAS G, DULAURENT A M. Assessment of the short-term fertilizer potential of mealworm frass using a pot experiment [J/OL]. Front. Sustain. Food Syst., 2021, 5: 714596 [2022-09-28]. . |
61 | CHIAM Z, LEE J T E, TAN J K N, et al.. Evaluating the potential of okara-derived black soldier fly larval frass as a soil amendment [J/OL]. J. Environ. Manage., 2021, 286: 112163[2022-09-28]. . |
62 | RUMMEL P S, BEULE L, HEMKEMEYER M, et al.. Black soldier fly diet impacts soil greenhouse gas emissions from frass applied as fertilizer [J/OL]. Front. Sustain. Food Syst., 2021, 5: 709993 [2022-09-28]. . |
63 | 余苗,李贞明,容庭,等.黑水虻在低碳畜牧业中的应用研究进展[J].广东农业科学,2020,47(12):122-133. |
YU M, LI Z M, RONG T, et al.. Research progress in the application of Hermetia illucens in low-carbon animal husbandry [J]. Guangdong Agric. Sci., 2020,47(12):122-133. | |
64 | KAWASAKI K, KAWASAKI T, HIRAYASU H, et al.. Evaluation of fertilizer value of residues obtained after processing household organic waste with black soldier fly larvae (Hermetia illucens) [J/OL]. Sustainability, 2020, 12(12): 4920 [2022-09-28]. . |
65 | 李卫娟,周文君,杨树义,等.黑水虻虫沙对白菜生长性能的影响[J].安徽农业科学,2016,44(10):111-112. |
LI W J, ZHOU W J, YANG S Y, et al.. Effects of Hermetia illucens sandworm on the growth performance of cabbage [J]. J. Anhui Agric. Sci., 2016,44(10):111-112. | |
66 | MENINO R, FELIZES F, CASTELO-BRANCO M A, et al.. Agricultural value of black soldier fly larvae frass as organic fertilizer on ryegrass [J/OL]. Heliyon, 2021, 7(1): e05855[2022-09-28]. . |
67 | HAMID B, ZAMAN M, FAROOQ S, et al.. Bacterial plant biostimulants: a sustainable way towards improving growth, productivity, and health of crops [J/OL]. Sustainability, 2021, 13(5): 2856[2022-09-28]. . |
68 | VILELA J D S, ANDRONICOS N M, KOLAKSHYAPATI M, et al.. Black soldier fly larvae in broiler diets improve broiler performance and modulate the immune system [J]. Arch. Anim. Nutr., 2021, 7(3): 695-706. |
69 | KROECKEL S, HARJES A G E, ROTH I, et al.. When a turbot catches a fly: evaluation of a pre-pupae meal of the black soldier fly (Hermetia illucens) as fish meal substitute-growth performance and chitin degradation in juvenile turbot (Psetta maxima) [J]. Aquaculture, 2012, 364: 345-352. |
70 | BEESIGAMUKAMA D, MOCHOGE B, KORIR N, et al.. In situ nitrogen mineralization and nutrient release by soil amended with black soldier fly frass fertilizer [J/OL]. Sci. Rep., 2021, 11(1): 14799[2022-09-28].. |
71 | CHAVEZ M, UCHANSKI M. Insect left-over substrate as plant fertiliser [J]. J. Insects Food Feed., 2021, 7(5): 683-694. |
[1] | Yanjun KE, Yumeng ZHANG, Yanjie GUO, Lijuan ZHANG, Zitao ZHANG, Yanzhi JI. Effects of Bio-organic Fertilizer Combined with Subsoiling on Farmland Soil Fertility and Crop Yield [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 157-166. |
[2] | Wenjun ZHAO, Jizhou YANG, Mei YIN, Jianfeng CHEN, Kaizheng XUE, Baowen HU, Libo FU, Wei WANG, Zhiyuan WANG, Yanxian YANG, Hua CHEN. Effects of Combined Application of Green Manure with Reduced Nitrogen Fertilizer on Yield and Quality of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 189-196. |
[3] | Lu MENG, Jingwen FAN, Xinyu SAI, Lusheng ZENG, Xiangyun SONG, Dejie CUI. Effects of Lime on Soil Improvement and Plant Growth in Apple Orchards [J]. Journal of Agricultural Science and Technology, 2023, 25(4): 197-204. |
[4] | Xiaoling LI, Wuxian ZHOU, Xiaogang JIANG, Darong LI, Daye HUANG, Meide ZHANG. Control Effect of Microbial Fertilizers on the Replanting Disease and Helicobasidium mompa Tanaka of Codonopsis tangshen Oliv. [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 119-131. |
[5] | Jia YAO, Jiaxin LIU, Yan SU, Xiaojuan SU. Effects of Combined Application of Tobacco Stem Biochar and Nitrogen Fertilizers on Corn Growth and Soil Properties in Seeding Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 140-151. |
[6] | Jiangang JIN, Zaifang TIAN, Minna ZHENG, Jiahui KANG. Effect of Different Fertilization Measures on the Diversity of Soil Bacteria Communities in Fed oats (Avena sativa L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 152-160. |
[7] | Juxian GUO, Bishan OUYANG, Guihua LI, Mei FU, Wenlong LUO, Shanwei LUO, Meilian LU. Effect of Bio-organic Fertilizers on Quality and Soil of Continuous Crop Chinese Flowering Cabbage [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 182-191. |
[8] | Geng LI, Yuanyuan ZHAO, Yuyuan CHENG, Jiang WU, Weidong DUAN, Guangting YIN, Qian LI, Chen CHEN, Fei ZHENG, Yuan LIU, Hongzhi SHI. Effects of Different Organic-inorganic Nitrogen Ratios on Soil Carbon and Nitrogen and Upper Leaf Quality in Nanyang Tobacco Area [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 175-186. |
[9] | Kaihong XIANG, Xu LYU, Chuanhai SHU, Riqu WUZA, Jinyue ZHANG, Yuemei ZHU, Zhiyuan YANG, Yongjian SUN, Jun MA. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Nitrogen Use Efficiency of Precision Hill-direct-seeding Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 149-165. |
[10] | Qian YANG, Na WU, Cong ZHAO, Yu HAN, Zhonghua MA, Yongsen YANG, Jili LIU. Effects of Zinc Fertilizer Application on Physiological Characteristics and Grain Zn Content of Maize in Saline-alkali Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 166-176. |
[11] | Yang LIU, Qichang ZHANG, Lu ZHANG, Yuling LI. Effects of Water-fertilizer Coupling on Fine Root Growth and Root Antioxidant Enzyme of Lonicera caerulea Seedlings [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 197-207. |
[12] | Xin PENG, Can FENG, Xiang MA, Hong LI, Yanqiong TANG, Juanjuan LI, Zhu LIU. Screening of Acidic Protease Producing Strains and Its Application in Seed Germination [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 88-95. |
[13] | Zengying PENG, Yingying SHEN, Songjiang DUAN, Yifan WU, Zongrun LI, Rensong GUO, Jusong ZHANG. Effect of Chemical Regulation on Canopy Structure and Yield of Cotton with Different Nitrogen Amounts [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 177-186. |
[14] | Xiubo XIA, Tao LI, Shoujun CAO, Jiangang YAO, Hongyun WANG, Lili ZHANG. Effect of Liquid Organic Fertilizer Partial Replacing Chemical Fertilizer on Bacterial Community in Greenhouse Tomato Root Zone [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 187-196. |
[15] | Huibin KE, Yong ZHOU, Guozhong ZHANG, Wen LYU, Yan LIU, Lin HUANG. Design and Experiment of Pneumatic Fertilizer Collecting and Discharging Device for Ratooning Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 106-114. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||