Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (3): 112-121.DOI: 10.13304/j.nykjdb.2023.0687
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles
Jing XU1(), Han LI2, Pinglu CHEN1(
), Jiangni LUO1, Chenglu TANG1, Muhua LIU1
Received:
2023-09-14
Accepted:
2024-03-18
Online:
2025-03-15
Published:
2025-03-14
Contact:
Pinglu CHEN
许静1(), 李晗2, 陈平录1(
), 罗江旎1, 唐承露1, 刘木华1
通讯作者:
陈平录
作者简介:
许静E-mail:xujing0085@jxau.edu.cn;
基金资助:
CLC Number:
Jing XU, Han LI, Pinglu CHEN, Jiangni LUO, Chenglu TANG, Muhua LIU. Calibration and Validation of Discrete Element Model for Camelliaoleifera Seed Meal[J]. Journal of Agricultural Science and Technology, 2025, 27(3): 112-121.
许静, 李晗, 陈平录, 罗江旎, 唐承露, 刘木华. 油茶茶枯离散元模型参数标定与试验[J]. 中国农业科技导报, 2025, 27(3): 112-121.
摩擦系数 Coefficient of friction | 茶枯 Seed meal | ||||
---|---|---|---|---|---|
静摩擦系数 Static friction coefficient | 0.215 | 0.415 | 0.297 | 0.257 | 0.250 |
滚动摩擦系数 Static friction coefficient | 0.242 | 0.311 | 0.347 | 0.278 | 0.244 |
Table 1 Static friction coefficient and rolling friction coefficient between seed meal and stainless steel
摩擦系数 Coefficient of friction | 茶枯 Seed meal | ||||
---|---|---|---|---|---|
静摩擦系数 Static friction coefficient | 0.215 | 0.415 | 0.297 | 0.257 | 0.250 |
滚动摩擦系数 Static friction coefficient | 0.242 | 0.311 | 0.347 | 0.278 | 0.244 |
参数符号 Parameter symbol | 参数 Parameter | 参数水平 Parameter level | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
X1 | 茶枯泊松比 Poisson’s ratio of COSM | 0.30 | 0.35 | 0.4 |
X2 | 茶枯剪切模量/MPa Shear modulus of COSM/MPa | 10 | 160 | 310 |
X3 | 茶枯-茶枯碰撞恢复系数 Collision recovery coefficient of COSM-COSM | 0.35 | 0.55 | 0.75 |
X4 | 茶枯-不锈钢碰撞恢复系数 Collision recovery coefficient of COSM-stainless steel | 0.10 | 0.35 | 0.6 |
X5 | 茶枯-茶枯静摩擦系数 Static friction coefficient of COSM-COSM | 0.44 | 0.80 | 1.16 |
X6 | 茶枯-不锈钢静摩擦系数 Static friction coefficient of COSM-stainless steel | 0.215 | 0.315 | 0.415 |
X7 | 茶枯-茶枯滚动摩擦系数 Coefficient of rolling friction of COSM-COSM | 0.050 | 0.175 | 0.300 |
X8 | 茶枯-不锈钢滚动摩擦系数 Coefficient of rolling friction of COSM-stainless steel | 0.242 0 | 0.294 5 | 0.347 0 |
X9 | JKR表面能/(J·m-2) JKR surface energy/(J·m-2) | 0 | 1.75 | 3.50 |
Table 2 Parameter level
参数符号 Parameter symbol | 参数 Parameter | 参数水平 Parameter level | ||
---|---|---|---|---|
-1 | 0 | 1 | ||
X1 | 茶枯泊松比 Poisson’s ratio of COSM | 0.30 | 0.35 | 0.4 |
X2 | 茶枯剪切模量/MPa Shear modulus of COSM/MPa | 10 | 160 | 310 |
X3 | 茶枯-茶枯碰撞恢复系数 Collision recovery coefficient of COSM-COSM | 0.35 | 0.55 | 0.75 |
X4 | 茶枯-不锈钢碰撞恢复系数 Collision recovery coefficient of COSM-stainless steel | 0.10 | 0.35 | 0.6 |
X5 | 茶枯-茶枯静摩擦系数 Static friction coefficient of COSM-COSM | 0.44 | 0.80 | 1.16 |
X6 | 茶枯-不锈钢静摩擦系数 Static friction coefficient of COSM-stainless steel | 0.215 | 0.315 | 0.415 |
X7 | 茶枯-茶枯滚动摩擦系数 Coefficient of rolling friction of COSM-COSM | 0.050 | 0.175 | 0.300 |
X8 | 茶枯-不锈钢滚动摩擦系数 Coefficient of rolling friction of COSM-stainless steel | 0.242 0 | 0.294 5 | 0.347 0 |
X9 | JKR表面能/(J·m-2) JKR surface energy/(J·m-2) | 0 | 1.75 | 3.50 |
序号 No. | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | 堆积角 Repose angle/(°) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 30.41 |
2 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 7.02 |
3 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 14.76 |
4 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 5.43 |
5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 41.24 |
6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 27.61 |
7 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 48.23 |
8 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 41.35 |
9 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 38.10 |
10 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 55.66 |
11 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 44.57 |
12 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 48.23 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37.65 |
Table 3 Plackett-burman test protocol and results
序号 No. | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | 堆积角 Repose angle/(°) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 30.41 |
2 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 7.02 |
3 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 14.76 |
4 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | -1 | 5.43 |
5 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | -1 | 41.24 |
6 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 27.61 |
7 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 48.23 |
8 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 41.35 |
9 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | 38.10 |
10 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 1 | 55.66 |
11 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | -1 | 44.57 |
12 | -1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | 48.23 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 37.65 |
参数 Parameter | 标准化效应 Standardization effect | 均方和 Sum of mean squares | 自由度 Degree of freedom | F值 F value | P值 P value | 显著性排序 Significance sort |
---|---|---|---|---|---|---|
X1 | -3.97 | 47.28 | 1 | 2.14 | 0.281 | 5 |
X2 | 1.38 | 5.74 | 1 | 0.26 | 0.661 | 8 |
X3 | -3.83 | 44.01 | 1 | 1.99 | 0.294 | 6 |
X4 | 0.70 | 1.46 | 1 | 0.07 | 0.822 | 9 |
X5 | 13.15 | 518.50 | 1 | 23.43 | 0.040 | 3 |
X6 | 13.44 | 541.90 | 1 | 24.48 | 0.038 | 2 |
X7 | 27.39 | 2 251.18 | 1 | 101.72 | 0.010 | 1 |
X8 | 3.26 | 31.88 | 1 | 1.44 | 0.353 | 7 |
X9 | 4.97 | 74.00 | 1 | 3.34 | 0.209 | 4 |
Table 4 Plackett-burman test parameters significance analysis
参数 Parameter | 标准化效应 Standardization effect | 均方和 Sum of mean squares | 自由度 Degree of freedom | F值 F value | P值 P value | 显著性排序 Significance sort |
---|---|---|---|---|---|---|
X1 | -3.97 | 47.28 | 1 | 2.14 | 0.281 | 5 |
X2 | 1.38 | 5.74 | 1 | 0.26 | 0.661 | 8 |
X3 | -3.83 | 44.01 | 1 | 1.99 | 0.294 | 6 |
X4 | 0.70 | 1.46 | 1 | 0.07 | 0.822 | 9 |
X5 | 13.15 | 518.50 | 1 | 23.43 | 0.040 | 3 |
X6 | 13.44 | 541.90 | 1 | 24.48 | 0.038 | 2 |
X7 | 27.39 | 2 251.18 | 1 | 101.72 | 0.010 | 1 |
X8 | 3.26 | 31.88 | 1 | 1.44 | 0.353 | 7 |
X9 | 4.97 | 74.00 | 1 | 3.34 | 0.209 | 4 |
试验序号 Test No. | 参数 Parameter | 堆积角 Repose angle/(°) | 相对误差 Relative errors/% | |||
---|---|---|---|---|---|---|
X5 | X6 | X7 | 仿真值 Simulation values | 试验值 Test values | ||
1 | 0.440 | 0.215 | 0.05 | 12.51 | 35.42 | 64.68 |
2 | 0.584 | 0.255 | 0.10 | 18.70 | 35.42 | 47.20 |
3 | 0.728 | 0.295 | 0.15 | 26.95 | 35.42 | 23.91 |
4 | 0.872 | 0.335 | 0.20 | 36.63 | 35.42 | 3.42 |
5 | 1.016 | 0.375 | 0.25 | 43.65 | 35.42 | 23.24 |
6 | 1.160 | 0.415 | 0.30 | 54.31 | 35.42 | 53.33 |
Table 5 The program and results of the steepest climbing test
试验序号 Test No. | 参数 Parameter | 堆积角 Repose angle/(°) | 相对误差 Relative errors/% | |||
---|---|---|---|---|---|---|
X5 | X6 | X7 | 仿真值 Simulation values | 试验值 Test values | ||
1 | 0.440 | 0.215 | 0.05 | 12.51 | 35.42 | 64.68 |
2 | 0.584 | 0.255 | 0.10 | 18.70 | 35.42 | 47.20 |
3 | 0.728 | 0.295 | 0.15 | 26.95 | 35.42 | 23.91 |
4 | 0.872 | 0.335 | 0.20 | 36.63 | 35.42 | 3.42 |
5 | 1.016 | 0.375 | 0.25 | 43.65 | 35.42 | 23.24 |
6 | 1.160 | 0.415 | 0.30 | 54.31 | 35.42 | 53.33 |
序号 No. | X5 | X6 | X7 | 堆积角 Repose angle/(°) |
---|---|---|---|---|
1 | 0.728 | 0.295 | 0.20 | 35.73 |
2 | 1.016 | 0.295 | 0.20 | 34.20 |
3 | 0.728 | 0.375 | 0.20 | 42.07 |
4 | 1.016 | 0.375 | 0.20 | 37.19 |
5 | 0.728 | 0.335 | 0.15 | 34.49 |
6 | 1.016 | 0.335 | 0.15 | 33.02 |
7 | 0.728 | 0.335 | 0.25 | 42.04 |
8 | 1.016 | 0.335 | 0.25 | 39.91 |
9 | 0.872 | 0.295 | 0.15 | 30.92 |
10 | 0.872 | 0.375 | 0.15 | 40.45 |
11 | 0.872 | 0.295 | 0.25 | 43.52 |
12 | 0.872 | 0.375 | 0.25 | 42.65 |
13 | 0.872 | 0.335 | 0.20 | 37.40 |
14 | 0.872 | 0.335 | 0.20 | 37.81 |
15 | 0.872 | 0.335 | 0.20 | 37.71 |
16 | 0.872 | 0.335 | 0.20 | 38.05 |
17 | 0.872 | 0.335 | 0.20 | 38.09 |
Table 6 Box-behnken experimental design and result
序号 No. | X5 | X6 | X7 | 堆积角 Repose angle/(°) |
---|---|---|---|---|
1 | 0.728 | 0.295 | 0.20 | 35.73 |
2 | 1.016 | 0.295 | 0.20 | 34.20 |
3 | 0.728 | 0.375 | 0.20 | 42.07 |
4 | 1.016 | 0.375 | 0.20 | 37.19 |
5 | 0.728 | 0.335 | 0.15 | 34.49 |
6 | 1.016 | 0.335 | 0.15 | 33.02 |
7 | 0.728 | 0.335 | 0.25 | 42.04 |
8 | 1.016 | 0.335 | 0.25 | 39.91 |
9 | 0.872 | 0.295 | 0.15 | 30.92 |
10 | 0.872 | 0.375 | 0.15 | 40.45 |
11 | 0.872 | 0.295 | 0.25 | 43.52 |
12 | 0.872 | 0.375 | 0.25 | 42.65 |
13 | 0.872 | 0.335 | 0.20 | 37.40 |
14 | 0.872 | 0.335 | 0.20 | 37.81 |
15 | 0.872 | 0.335 | 0.20 | 37.71 |
16 | 0.872 | 0.335 | 0.20 | 38.05 |
17 | 0.872 | 0.335 | 0.20 | 38.09 |
方差来源 Source of variance | 均方和 Sum of mean squares | 自由度 Degree of freedom | F值 F value | P值 P value |
---|---|---|---|---|
R2=0.9932;R2adj=0.9845;CV=1.17%;精密度(adep precision)=36.824 0 | ||||
模型Model | 201.21 | 9 | 113.95 | <0.000 1 |
X5 | 12.53 | 1 | 63.84 | <0.000 1 |
X6 | 40.46 | 1 | 206.19 | <0.000 1 |
X7 | 106.87 | 1 | 544.71 | <0.000 1 |
X5X6 | 2.81 | 1 | 14.30 | 0.006 9 |
X5X7 | 0.11 | 1 | 0.555 0 | 0.480 5 |
X6X7 | 27.04 | 1 | 137.82 | <0.000 1 |
X52 | 6.76 | 1 | 34.46 | 0.000 6 |
X62 | 2.39 | 1 | 12.16 | 0.010 2 |
X72 | 2.83 | 1 | 14.44 | 0.006 7 |
残差Residual | 1.37 | 7 | ||
失拟项 Lack of fit | 1.06 | 3 | 4.50 | 0.090 2 |
纯误差 Pure error | 0.31 | 4 | ||
总和Sum | 202.58 | 16 |
Table 7 Box-behnken quadratic regression model analysis of variance
方差来源 Source of variance | 均方和 Sum of mean squares | 自由度 Degree of freedom | F值 F value | P值 P value |
---|---|---|---|---|
R2=0.9932;R2adj=0.9845;CV=1.17%;精密度(adep precision)=36.824 0 | ||||
模型Model | 201.21 | 9 | 113.95 | <0.000 1 |
X5 | 12.53 | 1 | 63.84 | <0.000 1 |
X6 | 40.46 | 1 | 206.19 | <0.000 1 |
X7 | 106.87 | 1 | 544.71 | <0.000 1 |
X5X6 | 2.81 | 1 | 14.30 | 0.006 9 |
X5X7 | 0.11 | 1 | 0.555 0 | 0.480 5 |
X6X7 | 27.04 | 1 | 137.82 | <0.000 1 |
X52 | 6.76 | 1 | 34.46 | 0.000 6 |
X62 | 2.39 | 1 | 12.16 | 0.010 2 |
X72 | 2.83 | 1 | 14.44 | 0.006 7 |
残差Residual | 1.37 | 7 | ||
失拟项 Lack of fit | 1.06 | 3 | 4.50 | 0.090 2 |
纯误差 Pure error | 0.31 | 4 | ||
总和Sum | 202.58 | 16 |
1 | 陆思羽,胡冬南,郭晓敏,等.4个油茶品种的果实生长动态及经济性状比较[J].经济林研究,2020,38(2):46-52. |
LU S Y, HU D N, GUO X M, et al.. Comparison of fruit growth dynamics and economic characteristics of four Camellia oleifera clones [J]. Non-Wood For. Res., 2020,38(2): 46-52. | |
2 | 赖鹏英,肖志红,李培旺,等.油茶资源利用及产业发展现状[J].生物质化学工程,2021,55(1):23-30. |
LAI P Y, XIAO Z H, LI P W, et al.. Research on utilization of Camellia oleifera Abel.Resources and industrial development status [J]. Biomass Chem. Eng., 2021,55(1):23-30. | |
3 | 樊庆山,刁其玉,毕研亮,等.新型植物饼粕类饲料在反刍动物生产中的应用[J].家畜生态学报,2018,39(2):79-85. |
FAN Q S, DIAO Q Y, BI Y L, et al.. Application of new plant cake feeds in ruminant animal production [J]. J. Domest. Anim. Ecol., 2018,39(2):79-85. | |
4 | 练杰,金青哲,王兴国.油茶籽粕微生物发酵研究进展[J].中国油脂,2012,37(7):24-26. |
LIAN J, JIN Q Z, WANG X G. Research advance in microbial fermentation of oil-tea camellia seed meal [J]. China Oils Fats, 2012,37(7):24-26. | |
5 | 郑钰铟,胡素萍,陈辉,等.油茶饼粕生物炭和有机肥对土壤酶活性的影响[J].森林与环境学报,2018,38(3):348-354. |
ZHENG Y Y, HU S P, CHEN H, et al.. Effects of Camellia cake biochar and organic fertilizer on soil enzymatic activities [J]. J. For. Environ., 2018,38(3):348-354. | |
6 | 朱飞凡.油茶饼粕的农业应用价值与方法[J].食品安全导刊,2021(34):190-192. |
ZHU F F. Agricultural application value and method of Camellia oil cake [J]. China Food Saf. Mag., 2021(34):190-192. | |
7 | 渠心静,赵冠宇,耿蕊,等.油茶茶枯分解及养分释放规律[J].经济林研究,2019,37(4):104-111. |
QU X J, ZHAO G Y, GENG R, et al.. Decomposition and nutrient releasing pattern in Camellia oleifera seed meal [J]. Non-Wood For. Res., 2019,37(4):104-111. | |
8 | 查钱慧,洪文泓,谭莎,等.油茶饼粕有机肥对番茄生长表观及生理指标的影响[J].安徽农业大学学报,2015,42(3):458-462. |
ZHA Q H, HONG W H, TAN S, et al.. Effects of camellia cake organic fertilizer on the growth and physiological characteristics of Lycopersicon esculentum Mill [J]. J. Anhui Agric. Univ., 2015,42(3):458-462. | |
9 | 冯少平,黄婷,张晖,等.油茶饼粕有机肥对马占相思和窿缘桉幼苗生长的影响[J].亚热带植物科学,2021,50(5):366-370. |
FENG S P, HUANG T, ZHANG H, et al.. Oil-tea cake organic fertilizer on growth of Acacia mangium and Eucalyptus exserta seedlings [J]. Subtrop. Plant Sci., 2021,50(5):366-370. | |
10 | 张晖,吴雪辉,董斌,等.不同比例油茶饼粕自然发酵过程中的养分变化及微生物群落比较[J].经济林研究,2022,40(2):40-47. |
ZHANG H, WU X H, DONG B, et al.. Comparison of nutrient changes and bacterial community during natural fermentation of Camellia oleifera oil-tea cake with different proportions [J]. Non-Wood For. Res., 2022,40(2):40-47. | |
11 | 王金峰,付佐栋,翁武雄,等.圆锥盘推板式水田侧深施肥双行排肥器设计与试验[J].农业机械学报,2023,54(2):53-62, 106. |
WANG J F, FU Z D, WENG W X, et al.. Design and experiment of conical-disc push plate double-row fertilizer apparatus for side-deep fertilization in paddy field [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(2):53-62, 106. | |
12 | 袁全春,徐丽明,马帅,等.有机肥深施机肥块破碎刀设计与试验[J].农业工程学报,2020,36(9):44-51. |
YUAN Q C, XU L M, MA S, et al.. Design and test of sawtooth fertilizer block crushing blade of organic fertilizer deep applicator [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(9):44-51. | |
13 | 廖庆喜,陈勇,张青松,等.油菜侧深穴施肥装置设计与试验[J].农业机械学报,2023,54(2):41-52. |
LIAO Q X, CHEN Y, ZHANG Q S, et al.. Design and experiment of side deep hole fertilization device for rapeseed [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(2):41-52. | |
14 | 张兆国,薛浩田,王一驰,等.基于离散元法的三七仿生挖掘铲设计与试验[J].农业机械学报,2022,53(5):100-111. |
ZHANG Z G, XUE H T, WANG Y C, et al.. Design and experiment of Panax notoginseng bionic excavating shovel based on EDEM [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(5):100-111. | |
15 | 丁文波,朱继平,陈伟,等.基于EDEM的青稞接触参数仿真标定[J].中国农机化学报,2021,42(9):114-121. |
DING W B, ZHU J P, CHEN W, et al.. Simulation calibration of highland barley contact parameters based on EDEM [J]. J. Chin. Agric. Mech., 2021,42(9): 114-121. | |
16 | KOVACS A. Modelling of maize plant by the discrete element method [D]. Budapest: Budapest University of Technology and Economics, 2019. |
17 | PETINGCO M C, CASADA M E, MAGHIRANG R G. Discrete element method simulation of wheat bulk density as affected by grain drop height and kernel size distribution [J]. J. ASABE, 2022,65(3):555-566. |
18 | LI X Y, DU Y F, LIU L, et al.. Parameter calibration of corncob based on DEM [J/OL]. Adv. Powder Technol., 2022,33(8):103699 [2024-07-16]. . |
19 | 彭才望,许道军,贺喜,等.黑水虻处理的猪粪有机肥离散元仿真模型参数标定[J].农业工程学报,2020,36(17):212-218. |
PENG C W, XU D J, HE X, et al.. Parameter calibration of discrete element simulation model for pig manure organic fertilizer treated with Hermetia illucen [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(17):212-218. | |
20 | 罗帅,袁巧霞, GOUDA Shaban,等.基于JKR粘结模型的蚯蚓粪基质离散元法参数标定[J].农业机械学报,2018,49(4):343-350. |
LUO S, YUAN Q X, GOUDA S B, et al.. Parameters calibration of vermicomposting nursery substrate with discrete element method based on JKR contact model [J]. Trans. Chin. Soc. Agric. Mach., 2018,49(4):343-350. | |
21 | 王韦韦,蔡丹艳,谢进杰,等.玉米秸秆粉料致密成型离散元模型参数标定[J].农业机械学报,2021,52(3):127-134. |
WANG W W, CAI D Y, XIE J J, et al.. Parameters calibration of discrete element model for corn stalk powder compression simulation [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(3):127-134. | |
22 | 韩树杰,戚江涛,坎杂,等.新疆果园深施散体厩肥离散元参数标定研究[J].农业机械学报,2021,52(4):101-108. |
HAN S J, QI J T, KAN Z, et al.. Parameters calibration of discrete element for deep application of bulk manure in Xinjiang orchard [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(4):101-108. | |
23 | 牛智有,孔宪锐,沈柏胜,等.颗粒饲料破损离散元仿真参数标定[J].农业机械学报,2022,53(7):132-140, 207. |
NIU Z Y, KONG X R, SHEN B S, et al.. Parameters calibration of discrete element simulation for pellet feed attrition [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(7):132-140, 207. | |
24 | 宋占华,李浩,闫银发,等.桑园土壤非等径颗粒离散元仿真模型参数标定与试验[J].农业机械学报,2022,53(6):21-33. |
SONG Z H, LI H, YAN Y F, et al.. Calibration method of contact characteristic parameters of soil in mulberry field based on unequal-diameter particles DEM theory [J]. Trans. Chin. Soc. Agric. Mach., 2022,53(6):21-33. | |
25 | 张喜瑞,胡旭航,刘俊孝,等.香蕉秸秆离散元仿真粘结模型参数标定与试验[J].农业机械学报,2023,54(5):121-130. |
ZHANG X R, HU X H, LIU J X, et al.. Calibration and verification of bonding parameters of banana straw simulation model based on discrete element method [J]. Trans. Chin. Soc. Agric. Mach.,2023,54(5):121-130. | |
26 | 戚江涛,蒙贺伟,坎杂,等.基于EDEM的双螺旋奶牛饲喂装置给料性能分析与试验[J].农业工程学报,2017,33(24):65-71. |
QI J T, MENG H W, KAN Z, et al.. Analysis and test of feeding performance of dual-spiral cow feeding device based on EDEM [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(24):65-71. | |
27 | MA G G, SUN Z J, MA H, et al.. Calibration of contact parameters for moist bulk of shotcrete based on EDEM [J/OL]. Adv. Materials Sci. Eng., 2022(1):6072303 [2024-07-16]. . |
28 | 问小江,方飞飞,刘应科,等.基于煤粉堆积角的EDEM颗粒接触参数标定[J].中国安全科学报,2020,30(7):114-119. |
WEN X J, FANG F F, LIU Y K, et al.. Research on stacking angle of coal particles and parameter calibration on EDEM [J]. China Safety Sci. J., 2020,30(7):114-119. | |
29 | XIA R, LI B, WANG X W, et al.. Measurement and calibration of the discrete element parameters of wet bulk coal [J].Measurement, 2019,142:84-95. |
30 | 郝建军,魏文波,黄鹏程,等.油葵籽粒离散元参数标定与试验验证[J].农业工程学报,2021,37(12):36-44. |
HAO J J, WEI W B, HUANG P C, et al.. Calibration and experimental verification of discrete element parameters of oil sunflower seeds [J]. Trans. Chin. Soc. Agric. Eng., 2021,37(12):36-44. | |
31 | 田辛亮,丛旭,齐江涛,等.黑土区玉米秸秆-土壤混料离散元模型参数标定[J].农业机械学报,2021,52(10):100-108, 242. |
TIAN X L, CONG X, QI J T, et al.. Parameter calibration of discrete element model for corn straw-soil mixture in black soil areas [J]. Trans. Chin. Soc. Agric. Mach., 2021,52(10):100-108, 242. | |
32 | 廖宜涛,廖庆喜,周宇,等.饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J].农业机械学报,2020,51(6):73-82. |
LIAO Y T, LIAO Q X, ZHOU Y, et al.. Parameters calibration of discrete element model of fodder rape crop harvest in bolting stage [J]. Trans. Chin. Soc. Agric. Mach., 2020,51(6):73-82. | |
33 | 曾长女,金南南,谷贺,等.基于数字图像测量技术的豆粕剪切变形特性[J].农业工程学报,2020,36(5):310-317. |
ZENG C N, JIN N N, GU H, et al..Analysis of triaxial shear characteristics of soybean meal based on digital image measurement technology [J]. Trans. Chin. Soc. Agric. Eng., 2020,36(5):310-317. | |
34 | 丁辛亭,李凯,郝伟,等.基于RSM和GA-BP-GA优化的油茶籽仿真参数标定[J].农业机械学报,2023,54(2):139-150. |
DING X T, LI K, HAO W, et al.. Calibration of simulation parameters of Camellia oleifera seeds based on RSM and GA-BP-GA optimization [J]. Trans. Chin. Soc. Agric. Mach., 2023,54(2):139-150. | |
35 | 廖配.撞击式油茶果破壳装置的设计与试验[D].长沙:湖南农业大学,2019. |
LIAO P. The design and experiment of the impact device for breaking the shell of Camellia oleifera fruit [D]. Changsha: Hunan Agricultural University,2019. |
[1] | Changlong FENG, Chunguang HUANG, Chenyang NING, Shuping LI, Kejin CHEN. Optimization of Performance and Characteristics of Spiral Drill Bit Excavation Mechanism for Planting Machine [J]. Journal of Agricultural Science and Technology, 2025, 27(2): 89-98. |
[2] | Xiangzhou TIAN, Fuqiang HE, Fajiang CHEN, Luxin ZHAN. Calibration of Discrete Elemental Parameters of Wood Powder with Different Moisture Content Based on Angle of Repose [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 118-128. |
[3] | Guoqiang DUN, Lei WANG, Xinxin JI, Xinbo JIANG, Yu ZHAO, Na GUO. Calibration and Verification of Discrete Element Parameters of Jinxiang Purple Garlic Seeds [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 131-139. |
[4] | Xingsong WANG, Na WANG, Yu DU, Peng ZHOU, Ge WANG, Meng JIA, Zhaoli XU, Yuxiang BAI. Effects of Organic Fertilizer on Organic Matter Composition and Microbial Community Structure of Tobacco-Growing Soil in Yuxi [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 201-212. |
[5] | Guoqiang DUN, Xingpeng WU, Xinxin JI, Fuli ZHANG, Wenyi JI, Yongzhen YANG. Simulation and Optimization of Soybean Plot Metering Device with Double Swing Plate [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 82-90. |
[6] | Xiuli HAN, Jiawei LI, Jie ZHANG, Yanjie GUO, Lijuan ZHANG, Yanzhi JI. Effects of Bio-organic Fertilizer Replacing Part of Chemical Fertilizer on Grape Growth and Soil Fertility [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 195-205. |
[7] | Ming LI, Shuai DONG, Yongqiang PANG, Jiehua YAN, Wangzhong YE. Design Improvement and Test of Aeolian Sand Mixing Cutter [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 87-96. |
[8] | Yuanhao HUANG, Lazhen QUAN, Guangfa HU, Wei QUAN, Fanggang SHI. Calibration of Discrete Element Contact Parameters for Various Materials and Soils with Different Moisture Content [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 98-109. |
[9] | Lin CHEN, Nanhui YU, Lizong WANG, Jijun FAN, Gang LEI, Xiaopeng LIU, Long ZHOU, Jin ZHOU. Measurement of Contact Parameters and Discrete Element Simulation Calibration of Rice Bran and Broken Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 127-136. |
[10] | Yongjin LIANG, Ruixuan ZHU, Beilei WEI, Xiaomai YUAN, Wuyang CHENG, Bo PENG, Ziting WANG, Jianyu WEI. Effect of Combined Application of Organic Fertilizer on Tobacco Leaf Quality in China: a Meta-analysis [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 164-175. |
[11] | Dafang YANG, Feixiang LI, Yuefeng GE, Yichen LI. Study on Fertilizer Discharge Performance of External Groove Wheel Fertilizer Applicator Based on Discrete Element Method [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 88-97. |
[12] | Weijian ZHANG, Jingyi FENG, Yue LI, Wanying HE, Yanjing CHE, Ziying WANG, Xueyan BAI, Siyu GU. Effect of Endogenous and Exogenous Organic Matter on Phosphorus Adsorption and Availability in Black Soil [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 180-190. |
[13] | Jingjuan GAO, Chenyu ZHU, Yuqin KE, Chaoyuan ZHENG, Chunying LI, Wenqing LI. Effects of Organic Fertilizer Application Period on Carbon and Nitrogen Metabolism in Flue-cured Tobacco Under Tobacco-Rice Rotation [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 157-165. |
[14] | Yancheng WANG, Jiyue ZHANG, Shuaiqi FENG, Xue LIANG, Zhen ZHANG, Weiwei DONG, Wenxiu JI. Effects of Exogenous PGPR Combined with Organic Fertilizers on Soil Properties and Stress Resistance of Ginseng Under Drought Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 196-202. |
[15] | Xingsheng YIN, Lingfeng BAO, Yongyu PU, Jiali SUN, Qing ZHANG, Haiping LI, Mingying YANG, Yueping LIN, Huaixin WANG, Yonghong HE, Peiwen YANG. Effects of Chemical Fertilizer Reduction Combined with Bio-organic Fertilization on Tobacco Soil Characteristics and Tobacco Bacterial Wilt Control [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 122-131. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||