Journal of Agricultural Science and Technology ›› 2025, Vol. 27 ›› Issue (7): 182-189.DOI: 10.13304/j.nykjdb.2024.0048
• BIO-MANUFACTURING & RESOURCE AND ECOLOGY • Previous Articles
Qiang ZHU1(), Zongxian CHE1,2(
), Heng CUI2, Jiudong ZHANG2, Xingguo BAO2
Received:
2024-01-18
Accepted:
2024-04-22
Online:
2025-07-15
Published:
2025-07-11
Contact:
Zongxian CHE
朱强1(), 车宗贤1,2(
), 崔恒2, 张久东2, 包兴国2
通讯作者:
车宗贤
作者简介:
朱强 E-mail:1219045306@qq.com;
基金资助:
CLC Number:
Qiang ZHU, Zongxian CHE, Heng CUI, Jiudong ZHANG, Xingguo BAO. Effect of Green Manure Replacing Nitrogen Fertilizer on Greenhouse Gases in Wheat Fields[J]. Journal of Agricultural Science and Technology, 2025, 27(7): 182-189.
朱强, 车宗贤, 崔恒, 张久东, 包兴国. 绿肥替代氮肥对麦田温室气体的影响[J]. 中国农业科技导报, 2025, 27(7): 182-189.
处理 Treatment | 化学氮肥 Chemical nitrogen fertilizer | P2O5 | 绿肥 Green manure |
---|---|---|---|
CK | 0 | 0 | 0 |
100C | 225 | 150 | 0 |
85C+15G | 191 | 146 | 1 125 |
70C+30G | 158 | 142 | 2 250 |
55C+45G | 124 | 138 | 3 375 |
40C+60G | 90 | 134 | 4 500 |
Table 1 Fertilizer application rate of different treatments
处理 Treatment | 化学氮肥 Chemical nitrogen fertilizer | P2O5 | 绿肥 Green manure |
---|---|---|---|
CK | 0 | 0 | 0 |
100C | 225 | 150 | 0 |
85C+15G | 191 | 146 | 1 125 |
70C+30G | 158 | 142 | 2 250 |
55C+45G | 124 | 138 | 3 375 |
40C+60G | 90 | 134 | 4 500 |
处理Treatment | 株高 Plant height/cm | 穗长 Ear length/cm | 结实小穗数 Fertile spikelet number | 不孕小穗数 Number of infertile spikes | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|---|
CK | 52.42±1.90 c | 6.02±0.47 b | 9.88±0.52 b | 3.09±0.19 a | 48.91±1.18 ab | 2 530.00±340.27 b |
100C | 60.21±2.11 b | 7.68±0.40 a | 12.67±0.47 a | 2.61±0.55 ab | 51.35±1.72 a | 3 307.33±133.57 ab |
85C+15G | 63.33±1.36 ab | 8.09±0.17 a | 13.30±0.13 a | 2.05±0.08 b | 45.39±0.98 ab | 4 052.67±387.73 a |
70C+30G | 62.46±1.90 ab | 8.09±0.17 a | 13.95±0.06 a | 2.05±0.11 b | 44.56±1.99 ab | 4 136.00±534.51 a |
55C+45G | 64.79±1.18 ab | 8.18±0.24 a | 13.21±0.45 a | 2.21±0.19 ab | 42.74±2.96 b | 3 694.00±45.03 a |
40C+60G | 66.04±1.31 a | 8.65±0.23 a | 14.02±0.53 a | 1.79±0.11 b | 43.51±3.26 b | 3 944.00±219.39 a |
Table 2 Agronomic traits and yield of wheat with green manure as a substitute for nitrogen fertilizer
处理Treatment | 株高 Plant height/cm | 穗长 Ear length/cm | 结实小穗数 Fertile spikelet number | 不孕小穗数 Number of infertile spikes | 千粒重 1 000-grain weight/g | 产量 Yield/(kg·hm-2) |
---|---|---|---|---|---|---|
CK | 52.42±1.90 c | 6.02±0.47 b | 9.88±0.52 b | 3.09±0.19 a | 48.91±1.18 ab | 2 530.00±340.27 b |
100C | 60.21±2.11 b | 7.68±0.40 a | 12.67±0.47 a | 2.61±0.55 ab | 51.35±1.72 a | 3 307.33±133.57 ab |
85C+15G | 63.33±1.36 ab | 8.09±0.17 a | 13.30±0.13 a | 2.05±0.08 b | 45.39±0.98 ab | 4 052.67±387.73 a |
70C+30G | 62.46±1.90 ab | 8.09±0.17 a | 13.95±0.06 a | 2.05±0.11 b | 44.56±1.99 ab | 4 136.00±534.51 a |
55C+45G | 64.79±1.18 ab | 8.18±0.24 a | 13.21±0.45 a | 2.21±0.19 ab | 42.74±2.96 b | 3 694.00±45.03 a |
40C+60G | 66.04±1.31 a | 8.65±0.23 a | 14.02±0.53 a | 1.79±0.11 b | 43.51±3.26 b | 3 944.00±219.39 a |
Fig. 1 Total soil nitrogen content from green manure as a substitute for nitrogen fertilizerNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 2 N2O emissions from wheat fields under green manure substitution for nitrogen fertilizerNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
Fig. 3 CH4 emissions from wheat fields under green manure substitution for nitrogen fertilizerNote:Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
处理 Treatment | 温室气体累计排放量Greenhouse gas cumulative emission | 全球增温潜势Global warming potential | |
---|---|---|---|
N2O | CH4 | ||
CK | 0.43±0.08 d | -0.08±0.03 a | 126.18±23.08 d |
100C | 1.13±0.02 a | -0.3±0.08 ab | 329.87±6.15 a |
85C+15G | 0.97±0.03 b | -0.17±0.05 ab | 286.09±7.32 b |
70C+30G | 0.78±0.06 c | -0.12±0.05 a | 229.00±17.41 c |
55C+45G | 0.72±0.03 c | -0.40±0.07 b | 205.02±9.83 c |
40C+60G | 0.67±0.01 c | -0.21±0.13 ab | 199.70±6.95 c |
Table 3 Global warming potential under different treatments
处理 Treatment | 温室气体累计排放量Greenhouse gas cumulative emission | 全球增温潜势Global warming potential | |
---|---|---|---|
N2O | CH4 | ||
CK | 0.43±0.08 d | -0.08±0.03 a | 126.18±23.08 d |
100C | 1.13±0.02 a | -0.3±0.08 ab | 329.87±6.15 a |
85C+15G | 0.97±0.03 b | -0.17±0.05 ab | 286.09±7.32 b |
70C+30G | 0.78±0.06 c | -0.12±0.05 a | 229.00±17.41 c |
55C+45G | 0.72±0.03 c | -0.40±0.07 b | 205.02±9.83 c |
40C+60G | 0.67±0.01 c | -0.21±0.13 ab | 199.70±6.95 c |
[1] | 桑文秀.不同土地利用类型土壤温室气体排放及其环境影响因子[D].上海:华东师范大学,2021. |
SANG W X. Soil greenhouse gas emissions from multiple landuse types and the environmental influencing factors [D]. Shanghai: East China Normal University, 2021. | |
[2] | IPCC. Climate Change 2014:Synthesis Report [M]. Geneva, Switzerland, IPCC, 2014. |
[3] | GERBER J S, CARLSON K M, MAKOWSKI D, et al.. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management [J]. Glob. Change Biol., 2016,22(10):3383-3394. |
[4] | LIU S W, LIN F, WU S, et al.. Ameta-analysis of fertilizer-induced soil NO and combined with NO+N2O emissions [J]. Glob. Change Biol., 2017,23(6):2520-2532. |
[5] | 王聪,沈健林,郑亮,等.猪粪化肥配施对双季稻田 CH4和N2O排放及其全球增温潜势的影响[J].环境科学,2014,35(8):3120-3127. |
WANG C, SHEN J L, ZHENG L,et al..Effects of combined applications of pig manure and chemical fertilizers on CH4 and N2O emissions and their global warming potentials in paddy fields with double-rice cropping [J]. Environ. Sci., 2014,35(8):3120-3127. | |
[6] | 谢立勇,许婧,郭李萍.水肥管理对稻田 CH4排放及其全球增温潜势影响的评估[J].中国生态农业学报,2017,25(7):958-967. |
XIE L Y, XU J, GUO L P, et al.. Impact of water/fertilizer management on methane emission in paddy fields and on global warming potential [J]. Chin. J. Eco-Agric., 2017,25(7):958-967. | |
[7] | 谢立勇,叶丹丹,张贺,等.旱地土壤温室气体排放影响因子及减排增汇措施分析[J].中国农业气象,2011,32(4):481-487. |
XIE L Y, YE D D, ZHANG H, et al.. Review of influence factors on greenhouse gases emission from upland soils and relevant adjustment practices [J]. Chin. J. Agrometeorol., 2011,32(4):481-487. | |
[8] | 祝清震,武广伟,陈立平,等.小麦宽苗带撒播器弹籽板结构设计与优化[J].农业工程学报,2019,35(1):1-11. |
ZHU Q Z, WU G W, CHEN L P, et al.. Structural design and optimization of seed separated plate of wheat wide-boundary sowing device [J]. Trans. Chin. Soc. Agric. Eng., 2019,35(1):1-11. | |
[9] | 袁旭,张家安,常飞杨,等. 我国肥料施用现状及化肥减量研究进展[J].农业与技术, 2022,42(18):20-24. |
[10] | 王慧,卜容燕,韩上,等.有机肥配施氮肥对直播油菜产量及养分吸收利用的影响[J].中国土壤与肥料,2021(6):156-165. |
WANG H, BU R Y, HAN S, et al.. The effects of chemical fertilizer combined with organic fertilizer on the yields,nutrient uptake and utilization of direct-seeding rapeseed [J]. Soils Fert. Sci. China, 2021 (6):156-165. | |
[11] | 晏军,王伟义,李斌,等.秸秆还田下化肥减施对苏北地区水稻产量与氮素吸收利用的影响[J].中国土壤与肥料,2021(5):74-82. |
YAN J, WANG W Y, LI B, et al.. Effects of straw returning and fertilizer reduction on rice yield,nitrogen uptake and utilization in northern Jiangsu [J]. Soil Fert. Sci. China, 2021(5):74-82. | |
[12] | 崔恒,车宗贤,张久东,等.长期翻压绿肥河西绿洲灌区小麦的氮肥减施潜力[J].植物营养与肥料学报,2023,29(3):403-413. |
CUI H, CHE Z X, ZHANG J D, et al.. Potentials of chemical fertilizer reduction for wheat production in Hexi Oasis irrigation area under long-term application of green manure [J]. Plant Nutr. Fert. Sci., 2023,29(3):403-413. | |
[13] | 张久东,包兴国,曹卫东,等.长期施用绿肥减施化肥对毛叶苕子产草量和土壤肥力的影响[J].中国土壤与肥料,2017(6):66-70. |
ZHANG J D, BAO X G, CAO W D, et al.. Effect of long-term application of green manure and reducing fertilizer on Vicia villosa Roth yield and soil fertility [J]. Soil Fert. Sci. China, 2017(6):66-70. | |
[14] | 苟志文,殷文,徐龙龙,等.绿洲灌区复种豆科绿肥条件下小麦稳产的减氮潜力[J].植物营养与肥料学报,2020,26(12):2195-2203. |
GOU Z W, YIN W, XU L L, et al.. Potential of nitrogen reduction for maintaining wheat grain yield under multiple cropping with leguminous green manure in irrigated oasis [J]. J. Plant Nutr. Fert., 2020,26(12):2195-2203. | |
[15] | 毛小红.基于15N同位素技术麦后复种绿肥减施氮肥效应研究[D]. 西宁:青海大学, 2022. |
MAO X H. Based on 15N isotope technology, the effect of re-seeding green fertilizer after wheat reduced fertilizer application was studied [D]. Xi’ning: Qinghai University, 2022. | |
[16] | 张学良,张宇亭,刘瑞,等.绿肥不同还田方式对土壤温室气体排放的影响[J].草业学报,2021,30(5):25-33. |
ZHANG X L, ZHANG Y T, LIU R, et al.. Effects of green manure return regimes on soil greenhouse gas emissions [J].Acta Pratac. Sin., 2021,30(5):25-33. | |
[17] | 殷熙悦,殷文,樊志龙,等. 绿肥还田及减施氮肥对绿洲灌区小麦产量和土壤CO2、N2O排放的影响[J].甘肃农业大学学报,2022,57(1):48-55. |
YIN X Y, YIN W, FAN Z L, et al..Effects of returning green manure and reducing nitrogen fertilizer application on yield and soil CO2 and N2O emissions of wheat field in oasis irrigation area [J]. J. Gansu Agric. Univ., 2022,57(1):48-55. | |
[18] | 刘瑾.施氮对旱作农田土壤温室气体排放的影响因素研究[D].杨凌:西北农林科技大学,2022. |
LIU J. Influence factors of nitrogen fertilization on soil greenhouse gas emissions in wheat field [D]. Yangling:Northwest A&F University, 2022. | |
[19] | KIM S Y, GUTIERREZ J, KIM P J.Considering winter cover crop selection as green manure to control methane emission during rice cultivation in paddy soil [J]. Agric. Ecosyst. Environ., 2012,161:130-136. |
[20] | 吴茜虞,续勇波,雷宝坤,等. 粪肥替代对稻田土壤氮素、有机质及氮素吸收利用率的影响[J].西南农业学报,2023,36(10):2217-2223. |
WU X Y, XU Y B, LEI B K, et al.. Effects of manure substitution for chemical fertilizers on soil nitrogen, organic matter content and rice yield in paddy field [J]. Southwest China J. Agric. Sci., 2023, 36(10):2217-2223. | |
[21] | 胡诚,宋家咏,李晶,等.长期定位施肥土壤有效磷与速效钾的剖面分布及对作物产量的影响[J].生态环境学报,2012,21(4):673-676. |
HU C, SONG J Y, LI J, et al.. Profile distribution of soil available phosphorus and available potassium concentrations and crop grain yields in long-term fertilization experiment [J].Ecol. Environ. Sci., 2012,21(4):673-676. | |
[22] | 马忠明,王平,陈娟,等.适量有机肥与氮肥配施方可提高河西绿洲土壤肥力及作物生产效益[J].植物营养与肥料学报,2016,22(5):1298-1309. |
MA Z M, WANG P, CHEN J, et al.. Combined long-term application of organic materials with nitrogen fertilizer in suitable amount could improve soil fertility and crop production profit in Hexi Oasis of Gansu province [J]. J. Plant Nutr. Fert., 2016,22(5):1298-1309. | |
[23] | 黄明,吴金芝,李友军,等.耕作方式和氮肥用量对旱地小麦产量、蛋白质含量和土壤硝态氮残留的影响[J].中国农业科学,2021,54(24):5206-5219. |
HUANG M, WU J Z, LI Y J, et al.. Effects of tillage practices and nitrogen fertilizer application rates on grain yield, protein content in winter wheat and soil nitrate residue in dryland [J].Sci. Agric. Sin., 2021,54(24):5206-5219. | |
[24] | 张文霞,李盼,殷文,等. 麦后复种绿肥及配施不同水平氮肥对小麦产量、品质及氮素利用的影响[J].中国农业科学.2023,56(17):3317-3330. |
ZHANG W X, LI P, YIN W, et al.. Effects of multiple green manure sfter wheat combined with different levels of nitrogen fertilization on wheat yield, grain quality, and nitrogen utilization [J]. Sci. Agric. Sin., 2023, 56(17):3317-3330. | |
[25] | 吴科生,车宗贤,包兴国,等.长期翻压绿肥对提高灌漠土土壤肥力和作物产量的贡献[J].植物营养与肥料学报,2022,28(6):1134-1144. |
WU K S, CHE Z X, BAO X G, et al.. Contribution of long-term application of green manure to soil fertility and crop yield in irrigated desert soil [J]. J. Plant Nutr. Fert., 2022,28(6):1134-1144. | |
[26] | 陈语,杨世梅,张涛,等. 紫花苜蓿绿肥还田与氮肥减施对贵州黄壤温室气体排放和玉米产量的影响[J].江苏农业科学,2023,53(15):238-244. |
[27] | 江鹏,周国朋,韩梅,等.麦秸与毛叶苕子共同调控青海高原土壤温室气体排放的作用机制[J].植物营养与肥料学报,2023,29(4):651-663. |
JIANG P, ZHOU G P, HAN M, et al.. Mechanism of co-incorporating wheat straw and hairy vetch in controlling greenhouse gas emissions in Qinghai Plateau of China [J].J. Plant Nutr. Fert., 2023,29(4):651-663. | |
[28] | ZHENG Y, HUANG R, WANG B Z, et al.. Competitive interactions between methane- and ammonia-oxidizing bacteria modulate carbon and nitrogen cycling in paddy soil [J].Biogeosciences, 2014,11(12): 3353-3368. |
[29] | BODELIER P L E, LAANBROEK H J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments [J]. FEMS Microbiol. Ecol., 2004,47(3):265-277. |
[30] | LASHOF D A, AHUJA D R.Relative contributions of greenhouse gas emissions to global warming [J]. Nature, 1990,344:529-531. |
[31] | LEE H H, KIM S U, HAN H R, et al.. Mitigation of global warming potential and greenhouse gas intensity in arable soil with green manure as source of nitrogen [J/OL]. Environ. Pollut., 2021,288:117724 [2023-12-16]. . |
[1] | Sile HU, Yulong BAO, Tubuxinbayaer, Jifeng TAO, Enliang GUO. Chlorophyll Content Inversion of Spring Wheat Based on Unmanned Aerial Vehicle Hyperspectral and Integrated Learning [J]. Journal of Agricultural Science and Technology, 2025, 27(6): 93-103. |
[2] | Shuo SHI, Yu FENG, Liang LI, Rui MENG, Yanze ZHANG, Xiurong YANG. Transcriptome Analysis of Resistance to Sharp Eyespot of Wheat Mediated by Piriformospora indica and Key Genes Screening [J]. Journal of Agricultural Science and Technology, 2025, 27(5): 133-145. |
[3] | Bei MA, Jie GONG, Yinke DU, Yuwei GAN, Rong CHENG, Bo ZHU, Lixia YI, Jinxiu MA, Shiqing GAO. Identification and Expression Analysis of TaINP1 Gene Related to Pollen Pore Development in Wheat [J]. Journal of Agricultural Science and Technology, 2025, 27(4): 22-35. |
[4] | Zhenyu XUE, Kangkang ZHANG, Yuanyuan ZHANG, Qiangqiang YAN, Lirong YAO, Hong ZHANG, Yaxiong MENG, Erjing SI, Baochun LI, Xiaole MA, Huajun WANG, Juncheng WANG. Screening and Functional Gene Detection of High-quality and Drought-resistant Wheat Germplasms [J]. Journal of Agricultural Science and Technology, 2025, 27(1): 35-49. |
[5] | Xianyin SUN, Qiuhuan MU, Yong MI, Guangde LYU, Xiaolei QI, Yingying SUN, Xundong YIN, Ruixia WANG, Ke WU, Zhaoguo QIAN, Yan ZHAO, Minggang GAO. Classification and Evaluation of New Wheat Lines Based on GT Biplot [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 14-24. |
[6] | Xinyue BAO, Hongmin CHEN, Weiwei WANG, Yimiao TANG, Zhaofeng FANG, Jinxiu MA, Dezhou WANG, Jinghong ZUO, Zhanjun YAO. Cloning and Expression Analysis of Wheat TaCOBL-5 Genes [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 11-21. |
[7] | Yangyang DU, Yuanyuan BAO, Xiangyu LIU, Xinyong ZHANG. Effects of Tartary Buckwheat Rotation on Enzyme Activities and Microorganisms in Rhizosphere Soil of Cultivated Potato in Yunnan Province [J]. Journal of Agricultural Science and Technology, 2024, 26(5): 192-200. |
[8] | Gang ZHAO, Shuying WANG, Shangzhong LI, Jianjun ZHANG, Yi DANG, Lei WANG, Xingmao LI, Wanli CHENG, Gang ZHOU, Shengli NI, Tinglu FAN. Effects of Precipitation on Yield and Water Consumption of Winter Wheat in Loess Plateau in Recent 40 Years [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 164-173. |
[9] | Hong ZHANG, Weiguo LI, Xiaodong ZHANG, Bihui LU, Chengcheng ZHANG, Wei LI, Tinghuai MA. Extraction of Winter Wheat Planting Area Based on Fusion Features of HJ-1 and GF-1 Image [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 109-119. |
[10] | Jingyun ZHANG, Feng GUAN, Bo SHI, Xinjian WAN. Effects of Wheat Root Exudates on Bitter Gourd Seeding Growth and Soil Environment [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 181-190. |
[11] | Shuang LI, Aiying WANG, Zhen JIAO, Qing CHI, Hao SUN, Tao JIAO. Physiological and Chemical Characteristics and Transcriptome Analysis of Different Type of Wheat Seedlings Under Salt Stress [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 20-32. |
[12] | Yan JIN, Quanhao SONG, Jiajing SONG, Liang CHEN, Lishang ZHAO, Jie CHEN, Dong BAI, Tongquan ZHU. Comprehensive Evaluation of 69 Wheat Germplasm Resources [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 33-45. |
[13] | Hao WANG, Bing FANG, Dapeng YE, Limin XIE. Measurement and Analysis of Dielectric Properties of Wheat Bran at Microwave Frequency [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 115-121. |
[14] | Haixia LIU, Yinhui ZHANG, Lei ZHUANG, Mengjiao GUO, Li ZHAO, Meijuan WU, Jian HOU, Tian LI, Hongxia LIU, Xueyong ZHANG, Chenyang HAO. Discovering of Candidate Genes for Wheat SDS-Sedimentation Value Using Association Study and Development of KASP Marker [J]. Journal of Agricultural Science and Technology, 2024, 26(12): 18-29. |
[15] | Peng TIAN, Jie SONG, Xia LI, Yuzhi WANG, Bangbang WU. Analysis of Folate Content and Its Derivatives in Grains of Wheat with Different Grain Colors [J]. Journal of Agricultural Science and Technology, 2024, 26(11): 56-65. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||