中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (10): 226-233.DOI: 10.13304/j.nykjdb.2024.0261
• 生物制造 资源生态 • 上一篇
陈亮1(), 王克勤1, 齐慧1, 彭华2, 刘安1, 魏东宁1, 邓明1, 武小芬1(
)
收稿日期:
2024-04-01
接受日期:
2024-06-11
出版日期:
2024-10-15
发布日期:
2024-10-18
通讯作者:
陈亮,武小芬
作者简介:
陈亮 E-mail:chenliang912@163.com基金资助:
Liang CHEN1(), Keqin WANG1, Hui QI1, Hua PENG2, An LIU1, Dongning WEI1, Ming DENG1, Xiaofen WU1(
)
Received:
2024-04-01
Accepted:
2024-06-11
Online:
2024-10-15
Published:
2024-10-18
Contact:
Liang CHEN,Xiaofen WU
摘要:
为探明水分含量对平菇菌糠堆肥发酵的影响,制备了不同水分含量(46%、54%、59%、65%)的平菇菌糠,用尿素调节碳氮比(C/N)约为30∶1后加入菌剂进行堆肥发酵,对不同水分含量平菇菌糠的堆体温度、pH、电导率(electrical conductivity, EC)、种子发芽指数(germination index,GI)、养分及有机质含量等指标进行分析。结果表明,整个堆肥过程各处理的平均发酵温度差异不大,但含水量65%的菌糠在堆肥前17 d的发酵温度较含水量46%、54%、59%的菌糠低,后22 d的发酵温度较含水量46%、54%、59%的菌糠高。堆肥17 d后,不同水分含量的平菇菌糠总养分均大于4.00%;堆肥39 d后,各处理的总养分和N、P、K含量没有显著差异, GI均大于100%, pH、EC都达到NY/T 525—2021标准,但只有初始水分含量46%、54%的菌糠含水量达到NY/T 525—2021标准(≤30%)。综上所述,在生产实践中,含水量46%~54% 的平菇菌糠可在调节好C/N后,直接发酵为合格有机肥。研究结果为平菇菌糠肥料化利用提供科学依据。
中图分类号:
陈亮, 王克勤, 齐慧, 彭华, 刘安, 魏东宁, 邓明, 武小芬. 水分含量对平菇菌糠堆肥发酵的影响[J]. 中国农业科技导报, 2024, 26(10): 226-233.
Liang CHEN, Keqin WANG, Hui QI, Hua PENG, An LIU, Dongning WEI, Ming DENG, Xiaofen WU. Effect of Moisture Content on Composting with Spent Substrate of Pleurotus ostreatus[J]. Journal of Agricultural Science and Technology, 2024, 26(10): 226-233.
处理 Treatment | 发酵时间Fermentation time/d | ||
---|---|---|---|
0 | 17 | 39 | |
46% | 3.72±0.02 a | 4.69±0.27 ab | 4.91±0.01 a |
54% | 3.87±0.21 a | 5.04±0.04 a | 5.36±0.11 a |
59% | 3.73±0.04 a | 4.59±0.03 b | 5.06±0.18 a |
65% | 3.72±0.01 a | 4.67±0.08 ab | 5.29±0.33 a |
表1 不同处理堆肥过程中总养分含量 (%)
Table 1 Total nutrients content during composting different under treatments
处理 Treatment | 发酵时间Fermentation time/d | ||
---|---|---|---|
0 | 17 | 39 | |
46% | 3.72±0.02 a | 4.69±0.27 ab | 4.91±0.01 a |
54% | 3.87±0.21 a | 5.04±0.04 a | 5.36±0.11 a |
59% | 3.73±0.04 a | 4.59±0.03 b | 5.06±0.18 a |
65% | 3.72±0.01 a | 4.67±0.08 ab | 5.29±0.33 a |
处理 Treatment | 发酵时间Fermentation time/d | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 17 | 39 | |||||||
氮N | 磷P | 钾K | 氮N | 磷P | 钾K | 氮N | 磷P | 钾K | |
46% | 1.39±0.08 a | 0.70±0.16 a | 1.61±0.08 a | 1.72±0.11 a | 1.02±0.08 a | 1.95±0.07 b | 1.92±0.01 a | 1.04±0.06 a | 1.95±0.08 a |
54% | 1.48±0.08 a | 0.63±0.04 a | 1.76±0.17 a | 1.66±0.04 a | 1.08±0.08 a | 2.30±0.08 a | 1.96±0.07 a | 1.09±0.07 a | 2.31±0.03 a |
59% | 1.53±0.03 a | 0.58±0.01 a | 1.61±0.03 a | 1.69±0.01 a | 0.95±0.01 a | 1.95±0.06 b | 2.05±0.11 a | 1.04±0.01 a | 1.97±0.08 a |
65% | 1.50±0.00 a | 0.59±0.07 a | 1.63±0.06 a | 1.75±0.06 a | 0.89±0.06 a | 2.03±0.20 ab | 2.10±0.06 a | 1.06±0.01 a | 2.13±0.25 a |
表2 不同处理堆肥过程中氮磷钾含量 (%)
Table 2 N,P,K contents during composting under different treatments
处理 Treatment | 发酵时间Fermentation time/d | ||||||||
---|---|---|---|---|---|---|---|---|---|
0 | 17 | 39 | |||||||
氮N | 磷P | 钾K | 氮N | 磷P | 钾K | 氮N | 磷P | 钾K | |
46% | 1.39±0.08 a | 0.70±0.16 a | 1.61±0.08 a | 1.72±0.11 a | 1.02±0.08 a | 1.95±0.07 b | 1.92±0.01 a | 1.04±0.06 a | 1.95±0.08 a |
54% | 1.48±0.08 a | 0.63±0.04 a | 1.76±0.17 a | 1.66±0.04 a | 1.08±0.08 a | 2.30±0.08 a | 1.96±0.07 a | 1.09±0.07 a | 2.31±0.03 a |
59% | 1.53±0.03 a | 0.58±0.01 a | 1.61±0.03 a | 1.69±0.01 a | 0.95±0.01 a | 1.95±0.06 b | 2.05±0.11 a | 1.04±0.01 a | 1.97±0.08 a |
65% | 1.50±0.00 a | 0.59±0.07 a | 1.63±0.06 a | 1.75±0.06 a | 0.89±0.06 a | 2.03±0.20 ab | 2.10±0.06 a | 1.06±0.01 a | 2.13±0.25 a |
处理 Treatment | 发酵时间Fermentation time/d | |||||
---|---|---|---|---|---|---|
0 | 17 | 39 | ||||
有机质 Organic matter/% | 碳氮比 C/N | 有机质 Organic matter /% | 碳氮比 C/N | 有机质 Organic matter /% | 碳氮比 C/N | |
46% | 75.69±2.00 a | 31.59 | 71.52±2.40 a | 24.11 | 66.64±1.84 ab | 20.12 |
54% | 77.23±1.13 a | 30.26 | 69.08±4.95 a | 24.15 | 62.70±2.55 b | 18.56 |
59% | 76.01±0.71 a | 28.81 | 72.11±2.55 a | 24.75 | 68.85±1.34 a | 19.48 |
65% | 75.40±1.84 a | 29.16 | 72.43±0.57 a | 24.00 | 69.08±1.56 a | 19.08 |
表3 不同处理堆肥过程中有机质含量及C/N
Table 3 Organic matter contents content and C/N ratios during composting under different treatments
处理 Treatment | 发酵时间Fermentation time/d | |||||
---|---|---|---|---|---|---|
0 | 17 | 39 | ||||
有机质 Organic matter/% | 碳氮比 C/N | 有机质 Organic matter /% | 碳氮比 C/N | 有机质 Organic matter /% | 碳氮比 C/N | |
46% | 75.69±2.00 a | 31.59 | 71.52±2.40 a | 24.11 | 66.64±1.84 ab | 20.12 |
54% | 77.23±1.13 a | 30.26 | 69.08±4.95 a | 24.15 | 62.70±2.55 b | 18.56 |
59% | 76.01±0.71 a | 28.81 | 72.11±2.55 a | 24.75 | 68.85±1.34 a | 19.48 |
65% | 75.40±1.84 a | 29.16 | 72.43±0.57 a | 24.00 | 69.08±1.56 a | 19.08 |
1 | 严东权,薛颖昊,徐志宇,等.我国农作物秸秆直接还田利用现状、技术模式及发展建议[J].中国农业资源与区划,2023,44(4):1-14. |
YAN D Q, XUE Y H, XU Z Y,et al..Current utilization status,technical models and development proposals for direct crop straw returning to field in China [J].Chin.J.Agric.Resour.Region. Plan., 2023,44(4):1-14. | |
2 | LI X X, SHI Z L, WANG J C, et al.. Review on the crop straw utilization technology of China [J]. Am. J. Environ. Sci. Eng., 2020,4(4):61-64. |
3 | 陈正启,刘林,华蓉,等.我国农作物秸秆在食用菌栽培中的利用现状及应用前景[J].中国食用菌,2023,42(1):1-6. |
CHEN Z Q, LIU L, HUA R,et al..Current situation and application prospect of edible fungi cultivated by crop straw in China [J]. Edible Fungi China,2023,42(1):1-6. | |
4 | 诸葛诚祥.菌糠高效降解菌剂的研发及其在堆肥中的应用[D].杭州:浙江大学,2017. |
ZHUGE C X. Research on high efficiency degrading microbial inoculum of spent mushroom substrate and its application in composing [D]. Hangzhou: Zhejiang University, 2017. | |
5 | 中国食用菌协会.2021年度全国食用菌统计调查结果分析[J].中国食用菌,2023,42(1):118-127. |
6 | 李加友.菌糠综合开发利用进展[J]. 浙江食用菌, 2009,17(3):45-46. |
7 | 楼子墨.废弃菌糠理化性质及其资源化过程中的环境影响研究[D].杭州:浙江大学,2016. |
LOU Z M. Research on physio-chemical characteristics of spent mushroom substrate and its environmental impact during recycling process [D]. Hangzhou: Zhejiang University, 2016. | |
8 | 黄小云,沈华伟,韩海东,等.食用菌产业副产物资源化循环利用模式研究进展与对策建议[J].中国农业科技导报,2019,21(10):125-132. |
HUANG X Y, SHEN H W, HAN H D,et al..Research progress and countermeasures on recycling utilization model of edible fungi industry by-products [J]. J.Agric.Sci.Technol.,2019,21(10):125-132. | |
9 | 卫智涛,周国英,胡清秀.食用菌菌渣利用研究现状[J].中国食用菌,2010,29(5):3-6, 11. |
WEI Z T, ZHOU G Y, HU Q X.Research and utilization of edible fungi residue [J]. Edible Fungi China,2010,29(5):3-6, 11. | |
10 | STENTIFORD E I. Composting Control: Priciples and Practice [M]. Springer Netherlands,1996: 49-59. |
11 | HAMODA M F, AABU QDAIS H, NEWHAM J.Evaluation of municipal solid waste composting kinetics [J].Resour.Conserv.Recycl.,1998,23(4):209-223. |
12 | LIANG C, DAS K C, MCCLEDON R W. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend [J]. Bioresour. Technol., 2003, 86(2):131-137. |
13 | KIM E, LEE D H, WON S, et al.. Evaluation of optimum moisture content for composting of beef manure and bedding material mixtures using oxygen uptake measurement [J]. Asian- Australasian J. Anim. Sci., 2016, 29(5): 753-758. |
14 | 罗维,陈同斌.湿度对堆肥理化性质的影响[J].生态学报,2004,24(11):2656-2663. |
LUO W, CHEN T B.Effects of moisture content of compost on its physical and chemical properties [J].Acta Ecol.Sin.,2004,24(11):2656-2663. | |
15 | Philip Ghanney. 水分含量对好氧堆肥过程中木质纤维素降解及气体排放和成熟指数的影响[D]. 兰州:甘肃农业大学,2022. |
GHANNEY P. Moisture-induced effects on lignocellulose degradation, gas emissions and maturation indices of aerobically produced compost [D]. Lanzhou: Gansu Agricultural University, 2022. | |
16 | PETRIC I, SELIMBAŠIĆ V.Development and validation of mathematical model for aerobic composting process [J].Chem.Eng. J., 2008,139(2):304-317. |
17 | ROS M, KLAMMER S, KNAPP B,et al..Long-term effects of compost amendment of soil on functional and structural diversity and microbial activity [J]. Soil Use Manage., 2006,22(2):209-218. |
18 | 陈亮,胡瑶,李宏告,等.平菇菌糠栽培基质对菜薹生长与品质的影响[J].湖南农业科学,2019(6):23-25. |
CHEN L, HU Y, LI H G,et al..Effects of Pleurotus ostreatus cultivation substrate on growth and quality of cabbage [J].Hunan Agric. Sci., 2019(6):23-25. | |
19 | 张楠.抗小白菜炭疽病多功效生物有机肥的研制及其生防效果评价[D].大连:大连理工大学,2017. |
ZHANG N. The Preparation of multi-functional bio-organic fertilizer resisting Chinese cabbage anthracnose and the evaluation of its effect [J]. Dalian: Dalian University of Technology,2017. | |
20 | 田有国,李季,沈其荣,等. 有机肥料: [S]. 北京:中国标准出版社,2021. |
21 | 张万儒,杨光滢,屠星南,等. 森林土壤有机质的测定及碳氮比的计算: [S].北京:中国标准出版社,1999. |
22 | MACGREGOR S T, MILLER F C, PSATIANOS K M. Composting process control based on interaction between microbial heat output and temperature [J]. Appl. Environ. Microbiol., 1981, 41(6): 1321-1330. |
23 | 段曼莉,鄢入泮,周蓓蓓,等.去电子水对牛粪秸秆好氧堆肥进程及细菌群落的影响[J].环境科学学报,2022,42(2): 249-257. |
DUAN M L, YAN R P, ZHOU B B,et al..Effect of de-electron water on maturation process and bacterial community during aerobic composting of cow manure and straw [J].Acta Sci.Circumstantiae, 2022,42(2):249-257. | |
24 | 张军,陈同斌,高定,等.好氧生物堆肥中温度、氧气和水分模型的研究进展[J].中国给水排水,2010,26(11):148-152. |
ZHANG J, CHEN T B, GAO D,et al..Research progress in mathematical models of temperature,oxygen and moisture in aerobic composting process [J].China Water Wastewater,2010,26(11):148-152. | |
25 | 王佳丽,王梓宇,马咏琪,等. 氮素转化菌群对牛粪好氧堆肥的保氮效果[J].浙江农业学报,2024, 36(1):177-186. |
WANG J L, WANG Z Y, MA Y Q, et al.. Effect of nitrogen transforming flora on nitrogen retention in aerobic composting of cattle manure [J]. Acta Agric. Zhejiangensis, 2024, 36(1): 177-186. | |
26 | 詹亚斌,常远,周凯云,等. 不同来源有机废弃物堆肥磷素转化特征[J]. 环境工程, 2023, 41():1098-1102. |
ZHAN Y B, CHANG Y, ZHOU K Y, et al.. Characteristics of phosphorus transformation in composting of organic wastes from different sources [J]. Environ. Eng., 2023, 41(S2):1098-1102. | |
27 | 江君,杜静,常志州,等.水分对蓝藻堆肥效果的影响[J].江苏农业科学,2012,40(6):260-263. |
28 | 季彬,彭轶楠,董妙音,等.复合微生态制剂对牛粪有机肥堆肥效果的影响研究[J].家畜生态学报,2023,44(12):85-89. |
JI B, PENG Y N, DONG M Y,et al..Effects of compound probiotics on composting effect of organic fertilizer from cow manure [J]. J. Domest. Anim. Ecol., 2023,44(12):85-89. | |
29 | ZHAN Y B, ZHANG Z Y, MA T T,et al..Phosphorus excess changes rock phosphate solubilization level and bacterial community mediating phosphorus fractions mobilization during composting [J/OL].Bioresour. Technol., 2021,337:125433 [2024-03-03]. . |
30 | 蔡璐,葛奇峰,高定,等.城市污泥生物干化过程的有机质转化与产水规律[J].农业工程学报,2016,32(5):274-279. |
CAI L, GE Q F, GAO D,et al..Dynamic variations of organic compositions and water generation during bio-drying of sewage sludge [J]. Trans. Chin. Soc. Agric. Eng., 2016,32(5):274-279. | |
31 | CUNHA-QUEDA A C, RIBEIRO H M, RAMOS A,et al..Study of biochemical and microbiological parameters during composting of pine and eucalyptus bark [J].Bioresour. Technol., 2007,98(17):3213-3220. |
32 | SEEKING B. Troubleshooting the compost pile, Part Ⅰ [J]. Biocycle, 1999, 40(11):53-55. |
33 | CABRERA M J, CHIANG S C. Water content effect on denitrification and ammonia volatilization in poultry litter [J]. Soil Sci. Soc. Am. J., 1994, 58(3):811-816. |
34 | BARRINGTON S, CHOINIÈRE D, TRIGUI M,et al..Effect of carbon source on compost nitrogen and carbon losses [J].Bioresour. Technol., 2002,83(3):189-194. |
35 | TIQUIA S M, TAM N F Y, HODGKISS I J.Changes in chemical properties during composting of spent pig litter at different moisture contents [J]. Agric. Ecosyst. Environ., 1998,67(1):79-89. |
36 | MILLER F C, FINSTEIN M S. Materials balance in the composting of wastewater sludge as aerated by process control [J]. J. Water Pollut. Control Federation, 1985,57(2):122-127. |
37 | WALKER L P, NOCK T D, GOSSETT J M,et al..The role of periodic agitation and water addition in managing moisture limitations during high-solids aerobic decomposition [J].Process.Biochem., 1999,34(6/7):601-612. |
38 | HIGGINS C W, WALKER L P.Validation of a new model for aerobic organic solids decomposition:simulations with substrate specific kinetics [J]. Process. Biochem., 2001,36(8/9):875-884. |
[1] | 王吉平, 卢铁东, 梁芷姮, 张野, 苏天明, 何铁光. 不同来源微生物对葡萄枝条猪粪共堆肥过程的影响[J]. 中国农业科技导报, 2024, 26(9): 224-233. |
[2] | 孔令玮, 王孔檀, 麦力文, 伍玉鹏, 王熊飞, 王朝弼, 林嘉聪, 李勤奋. 不同生物利用度碳源对蚯蚓堆肥影响分析[J]. 中国农业科技导报, 2024, 26(7): 199-209. |
[3] | 姜坤宏, 许祯莹, 郭真真, 白林, 郝晓霞, 姜冬梅, 邱时秀. 微生物电化学技术原理及其在畜禽废弃物资源化领域的应用研究进展[J]. 中国农业科技导报, 2024, 26(7): 210-222. |
[4] | 莫雯婧, 陈洪森, 桂芳泽, 洪慈清, 蔡鑫铠, 关雄, 潘晓鸿. 菌糠水提液对马铃薯致病疫霉的抑制机理[J]. 中国农业科技导报, 2024, 26(5): 129-137. |
[5] | 陈芙蓉, 熊伟仡, 尹娇, 张小卓, 韩宇, 邓毅书. 微生物菌剂对叶菜废弃物堆肥过程的影响[J]. 中国农业科技导报, 2024, 26(3): 146-154. |
[6] | 黄小红, 焦静, 杜嵇华, 吴翼, 李尊香, 刘信鹏. 不同氮源添加对椰子叶堆肥腐殖化效果的影响[J]. 中国农业科技导报, 2024, 26(2): 162-170. |
[7] | 饶中秀, 孙继民, 张娜, 李龙涛, 董春华, 杨曾平, 黄凤球. 基料添加艾草秸秆对平菇生长及品质的影响[J]. 中国农业科技导报, 2023, 25(6): 208-215. |
[8] | 安柯萌, 赵立欣, 姚宗路, 于佳动, 李再兴, 黄亚丽, 梁依, 申瑞霞. 秸秆高值利用合成中链脂肪酸研究进展[J]. 中国农业科技导报, 2023, 25(3): 198-211. |
[9] | 胡茜, 王艺凝, 申鹏飞, 李雅倩, 杨阳, 王艳成, 姬文秀, 董微巍. 洋虫内产β-葡萄糖苷酶内生菌发酵液转化人参皂苷产物分析及其抗肿瘤活性研究[J]. 中国农业科技导报, 2023, 25(2): 119-127. |
[10] | 岳俊齐, 约日耶提·萨力, 克拉热木·克里木江, 陈永坤. 薰衣草LaGGPPS5基因在大肠杆菌中催化萜类物质合成[J]. 中国农业科技导报, 2023, 25(12): 85-92. |
[11] | 王应梅, 王艳壮, 李莹杰, 李燕, 何苗, 王晓璟, 杜红斌. 核桃树叶基质化的酸碱前处理与发酵工艺研究[J]. 中国农业科技导报, 2023, 25(10): 210-220. |
[12] | 柳丽, 杜中平, 李屹, 陈来生, 韩睿. NaOH预处理对青稞秸秆厌氧发酵特性的影响[J]. 中国农业科技导报, 2022, 24(8): 192-200. |
[13] | 齐淑新, 温晓蕾, 吉庭锋, 司增志, 赵春明, 乔亚科, 王艳敏, 蔡爱军, 张海华, 吉志新. 狐貉粪对黑水虻生长发育的影响[J]. 中国农业科技导报, 2022, 24(8): 201-206. |
[14] | 马金智, 朱志平, 卢连水, 张万钦. 通风速率对异位发酵床处理肉鸭粪污的效果研究[J]. 中国农业科技导报, 2022, 24(3): 210-217. |
[15] | 焦静, 郑勇, 李尊香, 黄小红, 杜嵇华, 郑金. 厌氧发酵在线监控技术研究进展[J]. 中国农业科技导报, 2021, 23(9): 87-95. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||