中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (10): 210-220.DOI: 10.13304/j.nykjdb.2022.0313
• 生物制造 资源生态 • 上一篇
王应梅1,2(), 王艳壮1, 李莹杰1, 李燕1, 何苗1, 王晓璟1, 杜红斌1(
)
收稿日期:
2022-04-18
接受日期:
2022-10-08
出版日期:
2023-10-15
发布日期:
2023-10-27
通讯作者:
杜红斌
作者简介:
王应梅 E-mail:1543056863@qq.com;
基金资助:
Yingmei WANG1,2(), Yanzhuang WANG1, Yingjie LI1, Yan LI1, Miao HE1, Xiaojing WANG1, Hongbin DU1(
)
Received:
2022-04-18
Accepted:
2022-10-08
Online:
2023-10-15
Published:
2023-10-27
Contact:
Hongbin DU
摘要:
为探索核桃树叶基质研制方法,进行了核桃树叶酸碱前处理和堆腐发酵研究。分别采用不同水平草酸和氨水溶液对核桃树叶进行不同时长的处理,运用灰色关联度法结合处理后核桃树叶理化性质,筛选适宜的前处理条件。此后设置进行前处理(A)和不进行前处理(B)2组试验,添加不同用量鼠李糖脂进行核桃树叶发酵,通过温度、T值(发酵前后物料碳氮质量比的比值)、重金属含量和种子发芽指数等指标判断核桃树叶发酵腐熟度与基质安全性。结果表明,体积分数为0.5%的氨水溶液处理2.0 h的加权关联度为0.739,高于其他碱溶液处理,且处理后的核桃树叶pH为6.61,更适合后期发酵,是适宜的核桃树叶酸碱前处理条件。发酵过程中,堆体最高温度达62.28 ℃,维持50 ℃以上高温6 d,发酵后T值在0.36~0.58范围内,均小于0.6;不进行前处理且不添加鼠李糖脂处理基质浸提液的种子发芽率大于70%,其余处理大于80%,基质重金属含量均符合标准要求,说明各处理核桃树叶均发酵腐熟,基质安全可用。其中添加质量分数为0.3%的鼠李糖脂处理的T值最低,种子发芽指数高于85%,堆腐效果优于其他处理。综上所述,核桃树叶基质化关键工艺为:在体积分数为0.5%的氨水处理2 h条件下进行前处理,然后添加质量分数为0.3%的鼠李糖脂发酵。
中图分类号:
王应梅, 王艳壮, 李莹杰, 李燕, 何苗, 王晓璟, 杜红斌. 核桃树叶基质化的酸碱前处理与发酵工艺研究[J]. 中国农业科技导报, 2023, 25(10): 210-220.
Yingmei WANG, Yanzhuang WANG, Yingjie LI, Yan LI, Miao HE, Xiaojing WANG, Hongbin DU. Research on Acid-base Pretreatment and Fermentation Process of Walnut Leaf Matrixing[J]. Journal of Agricultural Science and Technology, 2023, 25(10): 210-220.
处理Treatment | 是否进行前处理Ammonia pretreatment | 鼠李糖脂添加量Rhamnolipid added/% | |
---|---|---|---|
A | A0 | 是Yes | — |
A3 | 是Yes | 0.3 | |
A6 | 是Yes | 0.6 | |
A9 | 是Yes | 0.9 | |
B | B0 | 否No | — |
B3 | 否No | 0.3 | |
B6 | 否No | 0.6 | |
B9 | 否No | 0.9 |
表1 核桃树叶发酵处理
Table 1 Walnut leaves fermentation treatments
处理Treatment | 是否进行前处理Ammonia pretreatment | 鼠李糖脂添加量Rhamnolipid added/% | |
---|---|---|---|
A | A0 | 是Yes | — |
A3 | 是Yes | 0.3 | |
A6 | 是Yes | 0.6 | |
A9 | 是Yes | 0.9 | |
B | B0 | 否No | — |
B3 | 否No | 0.3 | |
B6 | 否No | 0.6 | |
B9 | 否No | 0.9 |
处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking | 处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking |
---|---|---|---|---|---|---|---|---|---|
C1H1 | 0.626 | 16 | 0.687 | 8 | C4H1 | 0.640 | 13 | 0.591 | 20 |
C1H2 | 0.684 | 5 | 0.711 | 4 | C4H2 | 0.602 | 21 | 0.560 | 26 |
C1H3 | 0.641 | 12 | 0.685 | 9 | C4H3 | 0.551 | 28 | 0.562 | 25 |
C1H4 | 0.646 | 9 | 0.695 | 7 | C4H4 | 0.548 | 29 | 0.537 | 29 |
C1H5 | 0.707 | 3 | 0.756 | 2 | C4H5 | 0.518 | 30 | 0.494 | 30 |
C2H1 | 0.765 | 1 | 0.766 | 1 | C5H1 | 0.635 | 15 | 0.604 | 18 |
C2H2 | 0.746 | 2 | 0.749 | 3 | C5H2 | 0.613 | 19 | 0.625 | 12 |
C2H3 | 0.677 | 6 | 0.705 | 6 | C5H3 | 0.615 | 18 | 0.612 | 14 |
C2H4 | 0.624 | 17 | 0.673 | 10 | C5H4 | 0.555 | 26 | 0.553 | 27 |
C2H5 | 0.686 | 4 | 0.711 | 5 | C5H5 | 0.600 | 22 | 0.582 | 23 |
C3H1 | 0.586 | 25 | 0.604 | 17 | C6H1 | 0.638 | 14 | 0.588 | 21 |
C3H2 | 0.588 | 24 | 0.580 | 24 | C6H2 | 0.663 | 7 | 0.606 | 16 |
C3H3 | 0.607 | 20 | 0.610 | 15 | C6H3 | 0.642 | 11 | 0.625 | 11 |
C3H4 | 0.590 | 23 | 0.582 | 22 | C6H4 | 0.553 | 27 | 0.544 | 28 |
C3H5 | 0.644 | 10 | 0.595 | 19 | C6H5 | 0.647 | 8 | 0.622 | 13 |
表2 不同前处理核桃树叶理化指标灰色关联度排序
Table 2 Ranking of correlation degree on physical and chemical indexes of walnut leaves treated by different pretreatment
处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking | 处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking |
---|---|---|---|---|---|---|---|---|---|
C1H1 | 0.626 | 16 | 0.687 | 8 | C4H1 | 0.640 | 13 | 0.591 | 20 |
C1H2 | 0.684 | 5 | 0.711 | 4 | C4H2 | 0.602 | 21 | 0.560 | 26 |
C1H3 | 0.641 | 12 | 0.685 | 9 | C4H3 | 0.551 | 28 | 0.562 | 25 |
C1H4 | 0.646 | 9 | 0.695 | 7 | C4H4 | 0.548 | 29 | 0.537 | 29 |
C1H5 | 0.707 | 3 | 0.756 | 2 | C4H5 | 0.518 | 30 | 0.494 | 30 |
C2H1 | 0.765 | 1 | 0.766 | 1 | C5H1 | 0.635 | 15 | 0.604 | 18 |
C2H2 | 0.746 | 2 | 0.749 | 3 | C5H2 | 0.613 | 19 | 0.625 | 12 |
C2H3 | 0.677 | 6 | 0.705 | 6 | C5H3 | 0.615 | 18 | 0.612 | 14 |
C2H4 | 0.624 | 17 | 0.673 | 10 | C5H4 | 0.555 | 26 | 0.553 | 27 |
C2H5 | 0.686 | 4 | 0.711 | 5 | C5H5 | 0.600 | 22 | 0.582 | 23 |
C3H1 | 0.586 | 25 | 0.604 | 17 | C6H1 | 0.638 | 14 | 0.588 | 21 |
C3H2 | 0.588 | 24 | 0.580 | 24 | C6H2 | 0.663 | 7 | 0.606 | 16 |
C3H3 | 0.607 | 20 | 0.610 | 15 | C6H3 | 0.642 | 11 | 0.625 | 11 |
C3H4 | 0.590 | 23 | 0.582 | 22 | C6H4 | 0.553 | 27 | 0.544 | 28 |
C3H5 | 0.644 | 10 | 0.595 | 19 | C6H5 | 0.647 | 8 | 0.622 | 13 |
处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking | 处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking |
---|---|---|---|---|---|---|---|---|---|
N1H1 | 0.617 | 19 | 0.610 | 19 | N4H1 | 0.646 | 7 | 0.623 | 16 |
N1H2 | 0.625 | 17 | 0.654 | 9 | N4H2 | 0.662 | 6 | 0.637 | 13 |
N1H3 | 0.625 | 16 | 0.666 | 6 | N4H3 | 0.636 | 9 | 0.631 | 14 |
N1H4 | 0.707 | 2 | 0.739 | 1 | N4H4 | 0.636 | 10 | 0.630 | 15 |
N1H5 | 0.632 | 11 | 0.683 | 5 | N4H5 | 0.680 | 3 | 0.697 | 3 |
N2H1 | 0.664 | 5 | 0.659 | 8 | N5H1 | 0.581 | 26 | 0.522 | 30 |
N2H2 | 0.597 | 22 | 0.646 | 10 | N5H2 | 0.561 | 27 | 0.540 | 29 |
N2H3 | 0.588 | 23 | 0.577 | 24 | N5H3 | 0.546 | 29 | 0.571 | 26 |
N2H4 | 0.532 | 30 | 0.545 | 28 | N5H4 | 0.613 | 20 | 0.577 | 23 |
N2H5 | 0.626 | 15 | 0.644 | 11 | N5H5 | 0.602 | 21 | 0.619 | 17 |
N3H1 | 0.629 | 13 | 0.601 | 21 | N6H1 | 0.621 | 18 | 0.639 | 12 |
N3H2 | 0.732 | 1 | 0.698 | 2 | N6H2 | 0.559 | 28 | 0.573 | 25 |
N3H3 | 0.630 | 12 | 0.599 | 22 | N6H3 | 0.643 | 8 | 0.663 | 7 |
N3H4 | 0.584 | 25 | 0.617 | 18 | N6H4 | 0.587 | 24 | 0.557 | 27 |
N3H5 | 0.627 | 14 | 0.602 | 20 | N6H5 | 0.677 | 4 | 0.695 | 4 |
表3 不同水平氨水溶液及时长处理核桃树叶理化指标灰色关联度
Table 3 Correlation degree of physical and chemical indexes of walnut leaves treated by different concentration of hartshorn and different duration
处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking | 处理Treatment | 等权关联度Equai-weighted correlation | 排序Ranking | 加权关联度Weighted correlation | 排序Ranking |
---|---|---|---|---|---|---|---|---|---|
N1H1 | 0.617 | 19 | 0.610 | 19 | N4H1 | 0.646 | 7 | 0.623 | 16 |
N1H2 | 0.625 | 17 | 0.654 | 9 | N4H2 | 0.662 | 6 | 0.637 | 13 |
N1H3 | 0.625 | 16 | 0.666 | 6 | N4H3 | 0.636 | 9 | 0.631 | 14 |
N1H4 | 0.707 | 2 | 0.739 | 1 | N4H4 | 0.636 | 10 | 0.630 | 15 |
N1H5 | 0.632 | 11 | 0.683 | 5 | N4H5 | 0.680 | 3 | 0.697 | 3 |
N2H1 | 0.664 | 5 | 0.659 | 8 | N5H1 | 0.581 | 26 | 0.522 | 30 |
N2H2 | 0.597 | 22 | 0.646 | 10 | N5H2 | 0.561 | 27 | 0.540 | 29 |
N2H3 | 0.588 | 23 | 0.577 | 24 | N5H3 | 0.546 | 29 | 0.571 | 26 |
N2H4 | 0.532 | 30 | 0.545 | 28 | N5H4 | 0.613 | 20 | 0.577 | 23 |
N2H5 | 0.626 | 15 | 0.644 | 11 | N5H5 | 0.602 | 21 | 0.619 | 17 |
N3H1 | 0.629 | 13 | 0.601 | 21 | N6H1 | 0.621 | 18 | 0.639 | 12 |
N3H2 | 0.732 | 1 | 0.698 | 2 | N6H2 | 0.559 | 28 | 0.573 | 25 |
N3H3 | 0.630 | 12 | 0.599 | 22 | N6H3 | 0.643 | 8 | 0.663 | 7 |
N3H4 | 0.584 | 25 | 0.617 | 18 | N6H4 | 0.587 | 24 | 0.557 | 27 |
N3H5 | 0.627 | 14 | 0.602 | 20 | N6H5 | 0.677 | 4 | 0.695 | 4 |
指标Index | 草酸 Oxalic acid | 氨水 Ammonia |
---|---|---|
溶液浓度Solution concentration/% | 1.00 | 0.50 |
处理时长Processing time/h | 0.50 | 2.00 |
容重Bulk density/(g·cm-3) | 0.13 | 0.11 |
总孔隙度Total porosity/% | 74.23 | 75.93 |
通气孔隙度Ventilation porosity/% | 34.11 | 35.40 |
持水孔隙度Water holding porosity/% | 40.12 | 40.53 |
气水比Gas water ratio | 0.86 | 0.87 |
pH | 3.09 | 6.61 |
电导率EC/(mS·cm-1) | 0.98 | 0.99 |
表4 草酸、氨水最优处理条件下核桃树叶理化性质
Table 4 Physicochemical properties of walnut leaves treated with oxalic acid and ammonia
指标Index | 草酸 Oxalic acid | 氨水 Ammonia |
---|---|---|
溶液浓度Solution concentration/% | 1.00 | 0.50 |
处理时长Processing time/h | 0.50 | 2.00 |
容重Bulk density/(g·cm-3) | 0.13 | 0.11 |
总孔隙度Total porosity/% | 74.23 | 75.93 |
通气孔隙度Ventilation porosity/% | 34.11 | 35.40 |
持水孔隙度Water holding porosity/% | 40.12 | 40.53 |
气水比Gas water ratio | 0.86 | 0.87 |
pH | 3.09 | 6.61 |
电导率EC/(mS·cm-1) | 0.98 | 0.99 |
图1 不同发酵处理堆体温度及气温变化注:7月5日、7月24日和8月6日进行翻堆,未测定温度。
Fig. 1 Changes of heap temperature and temperature under different fermentation treatmentsNote: The dump was turned on 5 July, 24 July and 6 August, and the temperature was not determined.
图4 不同发酵处理的C/N变化和T值注:不同小写字母表示不同处理间有P<0.05水平差异显著。
Fig. 4 C/N and T value under different fermentation treatmentsNote: Different lowercase latters indicate significant differenmes betwen different treatments at P<0.05 level.
图5 不同发酵处理核桃树叶基质浸提液种子发芽指数注:不同小写字母表示不同处理间在P<0.05水平差异显著。
Fig. 5 Seed germination index of substrate extracts under different fermentation treatmentsNote: Different lowercase letters indicate significant differences between different treatments at P<0.05 level.
元素 Element | A0 | A3 | A6 | A9 | B0 | B3 | B6 | B9 |
---|---|---|---|---|---|---|---|---|
钼Mo/(mg·kg-1) | 8.11±0.11 a | 0.44±0.16 g | 1.14±0.08 f | 4.01±0.18 c | 2.56±0.17 e | 3.15±0.17 d | 6.99±0.22 b | 2.59±0.11 e |
锌Zn/(mg·kg-1) | 85.25±0.25 a | 51.44±0.18 d | 42.35±0.12 g | 59.93±0.20 c | 48.59±0.24 e | 60.44±0.16 b | 59.81±0.10 c | 46.03±0.01 f |
银Ag/(mg·kg-1) | 0.19±0.01 d | 0.01±0.00 e | 0.01±0.00 e | 0.29±0.01 b | 0.02±0.00 e | 0.01±0.00 e | 0.25±0.01 c | 1.79±0.05 a |
镍Ni/(mg·kg-1) | 14.43±0.15 f | 10.55±0.15 g | 23.07±0.09 b | 26.78±0.15 a | 20.49±0.15 e | 21.93±0.23 c | 21.41±0.22 d | 20.69±0.21 e |
铅Pb/(mg·kg-1) | 11.48±0.22 a | 6.82±0.18 d | 5.65±0.17 f | 9.57±0.12 b | 6.49±0.09 e | 6.54±0.16 e | 7.52±0.11 c | 4.22±0.12 g |
钠Na/(mg·L-1) | 80.53±2.31 g | 117.94±2.31 d | 100.57±2.31 e | 89.88±2.31 f | 162.02±2.31 c | 164.70±2.31 bc | 167.37±0.00 b | 188.74±2.31 a |
氯Cl/(mg·L-1) | 114.15±0.71 g | 155.27±0.71 e | 148.89±0.71 f | 108.24±0.82 h | 983.38±1.88 c | 894.76±1.42 d | 988.35±1.42 b | 1 033.48±1.08 a |
钒V/ (mg·kg-1) | 20.53±0.12 a | 13.34±0.14 c | 11.42±0.11 e | 17.88±0.18 b | 10.27±0.25 f | 12.73±0.23 d | 10.56±0.17 f | 6.78±0.19 g |
铬Cr/(mg·kg-1) | 23.95±0.11 b | 15.32±0.13 f | 14.47±0.09 g | 21.81±0.19 c | 17.11±0.23 e | 27.82±0.13 a | 20.81±0.21 d | 13.72±0.19 h |
钴Co/(mg·kg-1) | 3.25±0.23 a | 1.89±0.12 e | 1.78±0.07 e | 2.86±0.09 b | 1.97±0.12 de | 2.33±0.08 c | 2.16±0.13 cd | 1.47±0.1 f |
砷As/(mg·kg-1) | 5.57±0.33 d | 0.67±0.11 g | 0.58±0.05 g | 6.39±0.07 c | 1.12±0.07 f | 7.08±0.15 b | 8.87±0.31 a | 4.39±0.13 e |
汞Hg/(mg·kg-1) | 0.30±0.10 a | 0.17±0.03 b | 0.16±0.00 b | 0.14±0.01 b | 0.14±0.00 b | 0.14±0.00 b | 0.06±0.00 c | 0.04±0.00 c |
镉Cd/(mg·kg-1) | 0.260±0.018 a | 0.001±0.001 f | 0.001±0.001 f | 0.096±0.002 c | 0.031±0.005 d | 0.018±0.008 e | 0.177±0.002 b | 0.003±0.002 f |
铜Cu/(mg·kg-1) | 16.43±0.14 b | 11.54±0.17 f | 10.47±0.12 g | 15.30±0.14 c | 13.90±0.05 e | 16.52±0.17 b | 20.91±0.13 a | 14.37±0.21 d |
表5 不同发酵处理核桃树叶基质重金属和潜在毒害元素含量
Table 5 Contents of heavy metals and potentially toxic elements in walnut leaf substrate
元素 Element | A0 | A3 | A6 | A9 | B0 | B3 | B6 | B9 |
---|---|---|---|---|---|---|---|---|
钼Mo/(mg·kg-1) | 8.11±0.11 a | 0.44±0.16 g | 1.14±0.08 f | 4.01±0.18 c | 2.56±0.17 e | 3.15±0.17 d | 6.99±0.22 b | 2.59±0.11 e |
锌Zn/(mg·kg-1) | 85.25±0.25 a | 51.44±0.18 d | 42.35±0.12 g | 59.93±0.20 c | 48.59±0.24 e | 60.44±0.16 b | 59.81±0.10 c | 46.03±0.01 f |
银Ag/(mg·kg-1) | 0.19±0.01 d | 0.01±0.00 e | 0.01±0.00 e | 0.29±0.01 b | 0.02±0.00 e | 0.01±0.00 e | 0.25±0.01 c | 1.79±0.05 a |
镍Ni/(mg·kg-1) | 14.43±0.15 f | 10.55±0.15 g | 23.07±0.09 b | 26.78±0.15 a | 20.49±0.15 e | 21.93±0.23 c | 21.41±0.22 d | 20.69±0.21 e |
铅Pb/(mg·kg-1) | 11.48±0.22 a | 6.82±0.18 d | 5.65±0.17 f | 9.57±0.12 b | 6.49±0.09 e | 6.54±0.16 e | 7.52±0.11 c | 4.22±0.12 g |
钠Na/(mg·L-1) | 80.53±2.31 g | 117.94±2.31 d | 100.57±2.31 e | 89.88±2.31 f | 162.02±2.31 c | 164.70±2.31 bc | 167.37±0.00 b | 188.74±2.31 a |
氯Cl/(mg·L-1) | 114.15±0.71 g | 155.27±0.71 e | 148.89±0.71 f | 108.24±0.82 h | 983.38±1.88 c | 894.76±1.42 d | 988.35±1.42 b | 1 033.48±1.08 a |
钒V/ (mg·kg-1) | 20.53±0.12 a | 13.34±0.14 c | 11.42±0.11 e | 17.88±0.18 b | 10.27±0.25 f | 12.73±0.23 d | 10.56±0.17 f | 6.78±0.19 g |
铬Cr/(mg·kg-1) | 23.95±0.11 b | 15.32±0.13 f | 14.47±0.09 g | 21.81±0.19 c | 17.11±0.23 e | 27.82±0.13 a | 20.81±0.21 d | 13.72±0.19 h |
钴Co/(mg·kg-1) | 3.25±0.23 a | 1.89±0.12 e | 1.78±0.07 e | 2.86±0.09 b | 1.97±0.12 de | 2.33±0.08 c | 2.16±0.13 cd | 1.47±0.1 f |
砷As/(mg·kg-1) | 5.57±0.33 d | 0.67±0.11 g | 0.58±0.05 g | 6.39±0.07 c | 1.12±0.07 f | 7.08±0.15 b | 8.87±0.31 a | 4.39±0.13 e |
汞Hg/(mg·kg-1) | 0.30±0.10 a | 0.17±0.03 b | 0.16±0.00 b | 0.14±0.01 b | 0.14±0.00 b | 0.14±0.00 b | 0.06±0.00 c | 0.04±0.00 c |
镉Cd/(mg·kg-1) | 0.260±0.018 a | 0.001±0.001 f | 0.001±0.001 f | 0.096±0.002 c | 0.031±0.005 d | 0.018±0.008 e | 0.177±0.002 b | 0.003±0.002 f |
铜Cu/(mg·kg-1) | 16.43±0.14 b | 11.54±0.17 f | 10.47±0.12 g | 15.30±0.14 c | 13.90±0.05 e | 16.52±0.17 b | 20.91±0.13 a | 14.37±0.21 d |
1 | 李源,马文强,朱占江,等.新疆核桃产业发展现状及对策建议[J].农学学报,2019,9(7):80-86. |
LI Y, MA W Q, ZHU Z J, et al.. Xinjiang walnut industry: the development status and countermeasures [J]. J. Agric., 2019, 9(7):80-86. | |
2 | 胡东宇,高健,黄力平,等.南疆四地州核桃产业现状与发展思路[J].北方园艺,2021(13):148-154. |
HU D Y, GAO J, HUANG L P, et al.. Current situation and development idea of walnut industry in four prefectures of Southern Xinjiang [J]. North Hortic., 2021(13):148-154. | |
3 | 柴艳芳.碱预处理对大花蕙兰基质松树皮发酵进程的影响[D].北京:北京林业大学,2014. |
CHAI Y F. Effect of alkali pretreatment on Cymbidium matrix—pink bark fermentation process [D]. Beijing: Beijing Forestry University, 2014. | |
4 | 郭程程.酸化处理对玉木耳菌糠腐熟过程的影响及水稻育苗基质研制[D].长春:吉林农业大学,2018. |
GUO C C. Effect of sulfuric acid pretreatment on the chemical properties and decay process during the composting process of white fungus chaff and preparation of rice seedling substrate [D]. Changchun: Jilin Agricultural University, 2018. | |
5 | 姚文英.南疆低成本复合基质的研制及育苗效果研究[D].阿拉尔:塔里木大学,2020. |
YAO W Y. The study of the development and application effect of walnut leaf substrate [D]. Alar: Tarim University, 2020. | |
6 | 陈广银,王德汉,吴艳,等.石灰预处理对树叶堆肥过程中养分转化的影响[J].生态环境,2007(1):77-82. |
CHEN G Y, WANG D H, WU Y, et al.. Effect of lime-pretreatment on nutrient transformation of leaves compost [J]. Ecol. Environ. Sci., 2007(1):77-82. | |
7 | 曾琼,刘德春,刘勇.植物角质层蜡质的化学组成研究综述[J].生态学报,2013,33(17):5133-5140. |
ZENG Q, LIU D C, LIU Y. The overview and prospect of chemical composition of plant cuticular wax [J]. Acta Ecol. Sin., 2013, 33(17):5133-5140. | |
8 | 张璐.园林绿化废弃物堆肥化的过程控制及其产品改良与应用研究[D].北京:北京林业大学,2015. |
ZHANG L. The process control of green waste composting and the improvement and application of compost product [D]. Beijing: Beijing Forestry University, 2015. | |
9 | 王艳壮,姚晓杰,李莹杰,等.核桃树叶基质化的酸碱前处理方式探究[J].农业灾害研究,2022,12(6):10-12. |
WANG Y Z, YAO X J, LI Y J, et al.. Exploration of acid and alkaline pre-treatment methods for basalization of walnut leaves [J]. J. Agric. Catastrophol., 2022, 12(6):10-12 | |
10 | 王应梅,申耀东,杨宗贤,等.有机发酵基质理化性质变化及对甜瓜出苗的影响[J].塔里木大学学报,2022,34(3):53-60. |
WANG Y M, SHEN Y D, YANG Z X, et al.. Effects of organic fermentation substrates on the emergence of melon seedlings and change of physicochemical properties [J]. J. Tarim Univ., 2022, 34(3):53-60. | |
11 | 环境保护部. 固体废物 有机质的测定 灼烧减量法: [S].北京:中国标准出版社,2015. |
12 | 白永娟.菇渣腐熟发酵条件及其在蔬菜育苗中的应用效果研究[D].杨凌:西北农林科技大学,2016. |
BAI Y J. The conditions of mushroom composting fermentation and seedling effects of composting substrates in vegetables [D]. Yangling: Northwest A&F University, 2016. | |
13 | 邓聚龙.灰色系统基本方法[M].武汉:华中科技大学出版社,2001:174. |
DENG J L. Basic Method of Grey System [M]. Wuhan: Huazhong University of Science & Technology Press, 2001:174. | |
14 | 杨泽敏,王维金,卢碧林.灰色关联分析在稻米品质综合评价上的应用[J].中国粮油学报,2003,18(3):4-6. |
YANG Z M, WANG W J, LU B L. Application of gray relational analysis in comprehensive evaluation of quality of rice [J]. J. Chin. Cereals Oils Assoc., 2003, 18(3):4-6. | |
15 | 农业农村部. 蔬菜育苗基质: [S].北京:中国农业出版社,2012. |
16 | 许燕,陈如凯,张木清.嗜热侧孢霉生物学特性及其液体发酵研究[J].福建农林大学学报(自然科学版),2008,37(1):99-104. |
XU Y, CHEN R K, ZHANG M Q. Study on liquid fermentation and biological characteristics of Sporotrichum thermophile [J]. J. Fujian Agric. For. Univ., 2008, 37(1):99-104. | |
17 | 中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 绿化用有机基质: [S].北京:中国标准出版社,2017. |
18 | ZUCCONI F, MONACO A, DEBERTOLDI M. Biological evaluation of compost maturity [J]. Biocycle, 1981, 22(4):27-29. |
19 | 冯海萍,杨志刚,杨冬艳,等.枸杞枝条基质化发酵工艺及参数优化[J].农业工程学报,2015,31(5):252-258. |
FENG H P, YANG Z G, YANG D Y, et al.. Parameter optimization of fermented substrate from wolfberry shoots [J]. Trans. Chin. Soc. Agric. Eng., 2015, 31(5):252-258. | |
20 | 白永娟,徐炜南,常晓晓,等.不同碳氮比及氮源对菇渣发酵的影响[J].浙江大学学报(农业与生命科学版),2016,42(6):760-768. |
BAI Y J, XU W N, CHANG X X, et al.. Effects of carbon-to-nitrogen ratios and nitrogen sources on composting of mushroom residue [J]. J. Zhejiang. Univ. (Agric. Life Sci.), 2016, 42(6):760-768. | |
21 | 姚文英,张中荣,黄亚星,等.不同发酵菌剂对树叶堆腐的效果[J].北方园艺,2019(5):26-31. |
YAO W Y, ZHANG Z R, HUANG Y X, et al.. Effects of different fermentation bacteria on leaf compost [J]. North Hortic., 2019 (5):26-31. | |
22 | 陈汉才,李桂花,廖森泰,等.农业废弃物无害化处理技术规范[J].广东农业科学,2010,37(8):222-239. |
23 | ZHANG S, WEI Z, ZHAO M, et al.. Influence of malonic acid and manganese dioxide on humic substance formation and inhibition of CO2 release during composting [J/OL]. Bioresour. Technol., 2020, 318(2):124075 [2022-03-02]. . |
24 | ZHOU Y, SELVAM A, WONG J W C. Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues [J]. Bioresour. Technol., 2014, 168(9):229-234. |
25 | 马怀良,许修宏.接种菌剂对鸡粪堆肥的影响[J].中国土壤与肥料,2009(5):61-63. |
MA H L, XU X H. Effect of microbial inoculants on composting of chicken manure [J]. Soil Fert. Sci. Chin., 2009(5):61-63. | |
26 | 蒋志伟.赤泥对堆肥中木质纤维素降解和腐殖质形成及功能微生物群落演替的影响[D].南宁:广西大学,2020. |
JIANG Z W. Effects of red mud on the degradation of humus formation and succession of functional microbial communies during composting [D]. Nanning: Guangxi University, 2020. | |
27 | 张陆,曹玉博,王惟帅,等.鸡粪添加对蔬菜废弃物堆肥腐殖化过程的影响[J].中国生态农业学报,2022,30(2):258-267. |
ZHANG L, CAO Y B, WANG W S, et al.. Effect of chicken manure addition on humification of vegetable waste in composting process [J]. Chin. J. Eco-Agric., 2022, 30(2):258-267. | |
28 | 张阅,王磊,陈金海.物料预处理对堆肥减量化、腐殖化和稳定化的影响及其微生物机制[J].工业微生物,2015,45(1):7-14. |
ZHANG Y, WANG L, CHEN J H. Effect of windrow pretreatment on reduction and humification during composting and its microbial mechanism [J]. Ind. Microbiol., 2015, 45(1):7-14. | |
29 | 吴阳,徐乐中,梅娟.C/N调控对园林绿化废弃物堆肥效果的影响[J].安全与环境工程,2016,23(1):64-69. |
WU Y, XU L Z, MEI J. Effect of C/N regulation on the performance of composting of green plant waste [J]. Saf. Environ. Eng., 2016, 23(1):64-69. | |
30 | 吴梦婷,梅娟,苏良湖,等.硫酸亚铁和过磷酸钙对牛粪秸秆混合堆肥氮损失和腐殖化的影响[J].生态与农村环境学报,2020,36(10):1353-1361. |
WU M T, MEI J, SU L H, et al.. Effects of ferrous sulfate and calcium superphosphate on nitrogen loss and humification during composting of cattle manure with straw [J]. J. Ecol. Rur. Environ, 2020, 36(10):1353-1361. | |
31 | 陈广银,王德汉,吴艳,等.落叶堆肥过程中有机物的动态变化[J].华南农业大学学报,2007,28(02):1-4. |
CHEN G Y, WANG D H, WU Y, et al.. Dynamic transformation of organic matter during thermophilic composting of litter [J]. J. South Chin. Agric. Univ., 2007, 28(2):1-4. | |
32 | 孙桂阳,张国言,董元杰.不同来源农业废弃物堆肥进程与产品肥效研究[J].水土保持学报,2021,35(4):349-360. |
SUN G Y, ZHANG G Y, DONG Y J. Composting process of agricultural wastes from different sources and fertilizer efficiency of theie products [J]. J. Soil Water Conser., 2021, 35(4):349-360. | |
33 | MOREL T L, COLIN F, GERMON J C, et al.. Methods for the Evaluation of the Matutity of Municipal Refuse Compost [M]. London: El Sevier Applied Science publishers, 1985:56-72. |
[1] | 邵社刚, 李婷, 柳勇, 林兰稳, 张东, 倪栋, 李俊杰, 朱立安. 外源菌剂对稻秆腐解及微生物群落结构的影响[J]. 中国农业科技导报, 2023, 25(9): 166-177. |
[2] | 肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215. |
[3] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[4] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[5] | 王旭东, 任雪冰, 汤舒, 郭琴, 薛梦瑶, 金鹏, 张云华. 污泥生物炭在土壤改良中的应用研究[J]. 中国农业科技导报, 2023, 25(6): 165-173. |
[6] | 庞喆, 王启龙, 李娟. 不同土壤改良剂对陕北低洼盐碱地土壤理化性质及水稻产量和经济效益的影响[J]. 中国农业科技导报, 2023, 25(6): 174-180. |
[7] | 饶中秀, 孙继民, 张娜, 李龙涛, 董春华, 杨曾平, 黄凤球. 基料添加艾草秸秆对平菇生长及品质的影响[J]. 中国农业科技导报, 2023, 25(6): 208-215. |
[8] | 张力方, 李志元, 刘宇翔, 张红丽, 秦勇. 不同复合基质对盆栽芫荽生长状况的综合评价[J]. 中国农业科技导报, 2023, 25(5): 204-214. |
[9] | 孟璐, 范敬文, 赛欣娱, 曾路生, 宋祥云, 崔德杰. 石灰对苹果园土壤改良和植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 197-204. |
[10] | 陈春林, 王琳洋, 单梦伟, 裴甜甜, 王吉庆, 肖怀娟, 李娟起, 李猛, 杜清洁. 发酵花生壳和牛粪替代草炭基质的番茄育苗效果分析[J]. 中国农业科技导报, 2023, 25(4): 205-214. |
[11] | 申海玉, 张浩, 吴子龙, 韩超, 宋炜, 马晓斐. 几种改良剂对煤矸石基质水分特征及狗尾草萌发的影响[J]. 中国农业科技导报, 2023, 25(3): 161-168. |
[12] | 安柯萌, 赵立欣, 姚宗路, 于佳动, 李再兴, 黄亚丽, 梁依, 申瑞霞. 秸秆高值利用合成中链脂肪酸研究进展[J]. 中国农业科技导报, 2023, 25(3): 198-211. |
[13] | 胡茜, 王艺凝, 申鹏飞, 李雅倩, 杨阳, 王艳成, 姬文秀, 董微巍. 洋虫内产β-葡萄糖苷酶内生菌发酵液转化人参皂苷产物分析及其抗肿瘤活性研究[J]. 中国农业科技导报, 2023, 25(2): 119-127. |
[14] | 郭航帆, 王萍, 王颖. 龙葵提取物对大肠杆菌、粪肠球菌及其生物膜形成的抑制作用[J]. 中国农业科技导报, 2023, 25(10): 152-164. |
[15] | 柳丽, 杜中平, 李屹, 陈来生, 韩睿. NaOH预处理对青稞秸秆厌氧发酵特性的影响[J]. 中国农业科技导报, 2022, 24(8): 192-200. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||