Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (2): 27-37.DOI: 10.13304/j.nykjdb.2022.0612
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Ting LIANG1(), Jinghong ZUO2, Qing LU1, Dong YANG2, Yimiao TANG2, Chunman GUO2(
), Dezhou WANG2(
), Weiwei WANG2(
)
Received:
2022-07-19
Accepted:
2022-09-28
Online:
2023-02-15
Published:
2023-05-17
Contact:
Chunman GUO,Dezhou WANG,Weiwei WANG
梁婷1(), 左静红2, 陆青1, 杨东2, 唐益苗2, 郭春曼2(
), 汪德州2(
), 王伟伟2(
)
通讯作者:
郭春曼,汪德州,王伟伟
作者简介:
梁婷 E-mail:1577033136@qq.com
基金资助:
CLC Number:
Ting LIANG, Jinghong ZUO, Qing LU, Dong YANG, Yimiao TANG, Chunman GUO, Dezhou WANG, Weiwei WANG. Identification and Expression Analysis Under Abiotic Stress of IQM Gene Family in Wheat (Triticum aestivum L.)[J]. Journal of Agricultural Science and Technology, 2023, 25(2): 27-37.
梁婷, 左静红, 陆青, 杨东, 唐益苗, 郭春曼, 汪德州, 王伟伟. 小麦IQM基因家族鉴定及非生物胁迫下表达分析[J]. 中国农业科技导报, 2023, 25(2): 27-37.
基因 Gene | 正向引物 Forward primer (5’–3’) | 反向引物 Reverse primer (5’–3’) |
---|---|---|
TaIQM1 | GACGATTGGTGGTCAAAGATGG | ACGCCGTCTATCTCAACTTCTGTC |
TaIQM2 | TCGTTTCAGCACTCCAGTTTCC | TTGACATCGGTGAGGCTAACGT |
TaIQM3 | CAAGGGCAGTGCGTCAAGTA | TGGAGTCATCCGAAGTGTGC |
TaIQM4 | GGAGATGTTCACAAGGCTGGATTC | GGGTAGTCCCTGACGCAAATGAT |
TaIQM5 | ATGGAGTTCTGAAGGCTATCTGGC | TTCTTCGGGTTTGTCGGCATC |
TaIQM6 | GTGCCAAGGGAGAAGGTCATT | GGTAGTCCCTGACGCAAATGAT |
TaIQM7 | CGAGCCTACTGAAACGGAAGAAC | CCATTTGAAGGACGGGAGACTG |
TaIQM8 | TCAAGAACTGGGAGGCGGAG | AGACGAAGTGCGGCTTGGAC |
TaIQM9 | CGAGAGGGCAAGGTATGAGGTTA | ACCCTTCTTCTTCTGCCCGAT |
TaIQM10 | AACTCGGACAGGCCATTTGT | TAGAGCTCACCGCATCGAAC |
TaIQM11 | CCATAAGCACAACCACAGCCT | CAACAATGGACGACAAGCACAG |
TaIQM12 | CTCGCCAGCAGATGATGACA | AAGGACCCTTTTCTCGCAGG |
TaIQM13 | GCTCATCCACCAAGGAAGACTAC | GGTACCATGTTGGAAGGCAGT |
TaIQM14 | GGAACCCTGAAGGCTATTTGG | TGGTTCCTCCCGTTTCTCTGT |
TaIQM15 | TAATGTCCGTGTGGAGCAAGCA | CGCTTGCATTCTGAGCTCTATCG |
TaIQM16 | GTGGTCACTACCGCCCTACA | CCTCTGCTGGGCTCATCTTC |
TaIQM17 | TGGAGCAAGCGAGACCAACCTA | GGCCGAGCTGATAGGATTTTGAC |
TaIQM18 | GAGAGGACTATGAGGTCGTGATTG | CCATTTTCAGCAACCAGCCT |
TaIQM19 | CCCAACTGATTCTCCCTTCCAAC | CCACACGGAGATTATCGTTGACCT |
TaIQM20 | CACAACTGATTCTCCCTTCCAAC | ATTCCCAGTGCTCCATTTCAG |
TaIQM21 | AGTGGACATTACAAACCAAGTGCG | ATTGTGGAGGATTGGATGGCA |
TaIQM22 | TGGACATTACAAACCGAGTGCG | AGCAGCAGTAGGGTTCTGTTTGGT |
TaIQM23 | CGTCAGCCTCAACGCATCAA | GGTTATGCCCGTACCTATGTCTTG |
18S | CGCGCGCTACGGCTTTGACCTA | CGGCAGATTCCCACGCGTTACG |
Table 1 qRT-PCR primers
基因 Gene | 正向引物 Forward primer (5’–3’) | 反向引物 Reverse primer (5’–3’) |
---|---|---|
TaIQM1 | GACGATTGGTGGTCAAAGATGG | ACGCCGTCTATCTCAACTTCTGTC |
TaIQM2 | TCGTTTCAGCACTCCAGTTTCC | TTGACATCGGTGAGGCTAACGT |
TaIQM3 | CAAGGGCAGTGCGTCAAGTA | TGGAGTCATCCGAAGTGTGC |
TaIQM4 | GGAGATGTTCACAAGGCTGGATTC | GGGTAGTCCCTGACGCAAATGAT |
TaIQM5 | ATGGAGTTCTGAAGGCTATCTGGC | TTCTTCGGGTTTGTCGGCATC |
TaIQM6 | GTGCCAAGGGAGAAGGTCATT | GGTAGTCCCTGACGCAAATGAT |
TaIQM7 | CGAGCCTACTGAAACGGAAGAAC | CCATTTGAAGGACGGGAGACTG |
TaIQM8 | TCAAGAACTGGGAGGCGGAG | AGACGAAGTGCGGCTTGGAC |
TaIQM9 | CGAGAGGGCAAGGTATGAGGTTA | ACCCTTCTTCTTCTGCCCGAT |
TaIQM10 | AACTCGGACAGGCCATTTGT | TAGAGCTCACCGCATCGAAC |
TaIQM11 | CCATAAGCACAACCACAGCCT | CAACAATGGACGACAAGCACAG |
TaIQM12 | CTCGCCAGCAGATGATGACA | AAGGACCCTTTTCTCGCAGG |
TaIQM13 | GCTCATCCACCAAGGAAGACTAC | GGTACCATGTTGGAAGGCAGT |
TaIQM14 | GGAACCCTGAAGGCTATTTGG | TGGTTCCTCCCGTTTCTCTGT |
TaIQM15 | TAATGTCCGTGTGGAGCAAGCA | CGCTTGCATTCTGAGCTCTATCG |
TaIQM16 | GTGGTCACTACCGCCCTACA | CCTCTGCTGGGCTCATCTTC |
TaIQM17 | TGGAGCAAGCGAGACCAACCTA | GGCCGAGCTGATAGGATTTTGAC |
TaIQM18 | GAGAGGACTATGAGGTCGTGATTG | CCATTTTCAGCAACCAGCCT |
TaIQM19 | CCCAACTGATTCTCCCTTCCAAC | CCACACGGAGATTATCGTTGACCT |
TaIQM20 | CACAACTGATTCTCCCTTCCAAC | ATTCCCAGTGCTCCATTTCAG |
TaIQM21 | AGTGGACATTACAAACCAAGTGCG | ATTGTGGAGGATTGGATGGCA |
TaIQM22 | TGGACATTACAAACCGAGTGCG | AGCAGCAGTAGGGTTCTGTTTGGT |
TaIQM23 | CGTCAGCCTCAACGCATCAA | GGTTATGCCCGTACCTATGTCTTG |
18S | CGCGCGCTACGGCTTTGACCTA | CGGCAGATTCCCACGCGTTACG |
基因 Gene | 基因号 Gene ID | 染色体定位 Chromosome localization | 氨基酸数 Number of amino acids | 相对分子量 Molecular weight/Da | 等电点 Point isoelectric | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
TaIQM1 | TraesCS1A02G125400.1 | Chr1A: 149352287-149356056 | 517 | 57 811.59 | 7.68 | 细胞核Nucleus |
TaIQM2 | TraesCS1B02G143800.1 | Chr1B: 195555337-195560543 | 580 | 65 214.18 | 7.69 | 细胞核 Nucleus |
TaIQM3 | TraesCS1D02G128400.1 | Chr1D: 141545585-141547817 | 424 | 47 667.67 | 9.49 | 细胞核Nucleus |
TaIQM4 | TraesCS2A02G154900.1 | Chr2A: 102130189-102132879 | 564 | 63 624.94 | 6.47 | 细胞核Nucleus |
TaIQM5 | TraesCS2B02G180000.1 | Chr2B: 154592307-154595019 | 572 | 64 351.52 | 6.36 | 细胞核Nucleus |
TaIQM6 | TraesCS2D02G160200.1 | Chr2D: 103126893-103129599 | 571 | 64 331.63 | 6.26 | 细胞核Nucleus |
TaIQM7 | TraesCS3A02G206400.1 | Chr3A: 363415357-363419189 | 556 | 62 188.59 | 9.13 | 细胞核Nucleus |
TaIQM8 | TraesCS3B02G238500.1 | Chr3B: 373842628-373844908 | 541 | 60 758.12 | 9.07 | 细胞核Nucleus |
TaIQM9 | TraesCS3D02G209200.1 | Chr3D: 276574646-276577885 | 530 | 59 496.51 | 8.97 | 细胞核Nucleus |
TaIQM10 | TraesCS4A02G021000.1 | Chr4A: 14261744-14265762 | 610 | 67 879.37 | 9.60 | 细胞核Nucleus |
TaIQM11 | TraesCS4B02G282600.2 | Chr4B: 565861371-565865127 | 669 | 74 779.20 | 9.41 | 细胞核Nucleus |
TaIQM12 | TraesCS4D02G281600.1 | Chr4D: 452795390-452798654 | 613 | 68 128.53 | 9.67 | 细胞核Nucleus |
TaIQM13 | TraesCS5A02G129600.1 | Chr5A: 290924878-290930090 | 461 | 51 276.55 | 6.88 | 细胞核Nucleus |
TaIQM14 | TraesCS5A02G375700.1 | Chr5A: 573606336-573609441 | 534 | 59 693.35 | 8.60 | 细胞核Nucleus |
TaIQM15 | TraesCS5B02G128200.1 | Chr5B: 234295411-234304552 | 480 | 53 236.89 | 6.14 | 细胞核Nucleus |
TaIQM16 | TraesCS5B02G377900.1 | Chr5B: 555950716-555953748 | 538 | 60 186.87 | 7.57 | 细胞核Nucleus |
TaIQM17 | TraesCS5D02G137100.1 | Chr5D: 218051693-218055671 | 480 | 53 123.76 | 6.30 | 细胞核Nucleus |
TaIQM18 | TraesCS5D02G385200.1 | Chr5D: 454309041-454312175 | 533 | 59 832.36 | 7.17 | 细胞核Nucleus |
TaIQM19 | TraesCS6A02G108900.1 | Chr6A: 77780102-77784144 | 485 | 53 610.33 | 8.58 | 细胞核Nucleus |
TaIQM20 | TraesCS6B02G133900.1 | Chr6B: 130822739-130829829 | 477 | 52 647.25 | 6.44 | 细胞核Nucleus |
TaIQM21 | TraesCS6B02G137500.1 | Chr6B: 135112248-135116198 | 483 | 53 349.14 | 8.82 | 细胞核Nucleus |
TaIQM22 | TraesCS6D02G093400.1 | Chr6D: 58234159-58240593 | 480 | 53 062.87 | 8.04 | 细胞核Nucleus |
TaIQM23 | TraesCS6D02G097300.1 | Chr6D: 61134482-61138500 | 484 | 53 425.06 | 8.06 | 细胞核Nucleus |
Table 2 Characteristics and subcellular localization prediction of TaIQM genes
基因 Gene | 基因号 Gene ID | 染色体定位 Chromosome localization | 氨基酸数 Number of amino acids | 相对分子量 Molecular weight/Da | 等电点 Point isoelectric | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|---|
TaIQM1 | TraesCS1A02G125400.1 | Chr1A: 149352287-149356056 | 517 | 57 811.59 | 7.68 | 细胞核Nucleus |
TaIQM2 | TraesCS1B02G143800.1 | Chr1B: 195555337-195560543 | 580 | 65 214.18 | 7.69 | 细胞核 Nucleus |
TaIQM3 | TraesCS1D02G128400.1 | Chr1D: 141545585-141547817 | 424 | 47 667.67 | 9.49 | 细胞核Nucleus |
TaIQM4 | TraesCS2A02G154900.1 | Chr2A: 102130189-102132879 | 564 | 63 624.94 | 6.47 | 细胞核Nucleus |
TaIQM5 | TraesCS2B02G180000.1 | Chr2B: 154592307-154595019 | 572 | 64 351.52 | 6.36 | 细胞核Nucleus |
TaIQM6 | TraesCS2D02G160200.1 | Chr2D: 103126893-103129599 | 571 | 64 331.63 | 6.26 | 细胞核Nucleus |
TaIQM7 | TraesCS3A02G206400.1 | Chr3A: 363415357-363419189 | 556 | 62 188.59 | 9.13 | 细胞核Nucleus |
TaIQM8 | TraesCS3B02G238500.1 | Chr3B: 373842628-373844908 | 541 | 60 758.12 | 9.07 | 细胞核Nucleus |
TaIQM9 | TraesCS3D02G209200.1 | Chr3D: 276574646-276577885 | 530 | 59 496.51 | 8.97 | 细胞核Nucleus |
TaIQM10 | TraesCS4A02G021000.1 | Chr4A: 14261744-14265762 | 610 | 67 879.37 | 9.60 | 细胞核Nucleus |
TaIQM11 | TraesCS4B02G282600.2 | Chr4B: 565861371-565865127 | 669 | 74 779.20 | 9.41 | 细胞核Nucleus |
TaIQM12 | TraesCS4D02G281600.1 | Chr4D: 452795390-452798654 | 613 | 68 128.53 | 9.67 | 细胞核Nucleus |
TaIQM13 | TraesCS5A02G129600.1 | Chr5A: 290924878-290930090 | 461 | 51 276.55 | 6.88 | 细胞核Nucleus |
TaIQM14 | TraesCS5A02G375700.1 | Chr5A: 573606336-573609441 | 534 | 59 693.35 | 8.60 | 细胞核Nucleus |
TaIQM15 | TraesCS5B02G128200.1 | Chr5B: 234295411-234304552 | 480 | 53 236.89 | 6.14 | 细胞核Nucleus |
TaIQM16 | TraesCS5B02G377900.1 | Chr5B: 555950716-555953748 | 538 | 60 186.87 | 7.57 | 细胞核Nucleus |
TaIQM17 | TraesCS5D02G137100.1 | Chr5D: 218051693-218055671 | 480 | 53 123.76 | 6.30 | 细胞核Nucleus |
TaIQM18 | TraesCS5D02G385200.1 | Chr5D: 454309041-454312175 | 533 | 59 832.36 | 7.17 | 细胞核Nucleus |
TaIQM19 | TraesCS6A02G108900.1 | Chr6A: 77780102-77784144 | 485 | 53 610.33 | 8.58 | 细胞核Nucleus |
TaIQM20 | TraesCS6B02G133900.1 | Chr6B: 130822739-130829829 | 477 | 52 647.25 | 6.44 | 细胞核Nucleus |
TaIQM21 | TraesCS6B02G137500.1 | Chr6B: 135112248-135116198 | 483 | 53 349.14 | 8.82 | 细胞核Nucleus |
TaIQM22 | TraesCS6D02G093400.1 | Chr6D: 58234159-58240593 | 480 | 53 062.87 | 8.04 | 细胞核Nucleus |
TaIQM23 | TraesCS6D02G097300.1 | Chr6D: 61134482-61138500 | 484 | 53 425.06 | 8.06 | 细胞核Nucleus |
Fig. 3 Cis-acting elements analysis of TaIQM genesNote: ABRE—Cis-acting element involved in the abscisic acid responsiveness; ARE—Cis-acting regulatory element essential for the anaerobic induction; Circadian—Cis-acting regulatory element involved in circadian control; G-box—Cis-acting regulatory element involved in light responsiveness; TGACG-motif—Cis-acting regulatory element involved in the MeJA-responsiveness; GT1-motif—Light responsive element; TC-rich repeats—Cis-acting element involved in defense and stress responsiveness; G-box—Cis-acting regulatory element involved in light responsiveness; CGTCA-motif—Cis-acting regulatory element involved in the MeJA-responsiveness; CAT-box—Cis-acting regulatory element related to meristem expression; P-box—Gibberellin-responsive element; GARE-motif—Gibberellin-responsive element; TGA-element—Auxin-responsive element; ACE—Cis-acting element involved in light responsiveness; GCN4_motif—Cis-regulatory element involved in endosperm expression; TCA-element—Cis-acting element involved in salicylic acid responsiveness; TATC-box—Cis-acting element involved in gibberellin-responsiveness; MBS—MYB binding site involved in drought-inducibility; AuxRR-core—Cis-acting regulatory element involved in auxin responsiveness; LTR—Cis-acting element involved in low-temperature responsiveness.
Fig. 4 Heat map of relative expression level of TaIQM genes in different tissuesNote: Red color indicates up-regulation expression, blue color indicates down-regulation expression. Z10—1 leaf period; Z13—3 leaves stage; Z23—Early tillering; Z30—Standing stage; Z32—Early jointing stage; Z39—Late jointing stage; Z65—Middle flowering; Z71—2 d after flowering; Z75—10 d after flowering; Z85—30 d after flowering.
Fig. 5 Expression analysis of IQM genes in wheat under abiotic stressesA: Relative expressionunder ABA, NaCl, heat and clod; B: Relative expression under drought.Red color indicates up-regulation expression, blue color indicates down-regulation expression
1 | 田长恩, 周玉萍. 植物具IQ基序的钙调素结合蛋白的研究进展[J]. 植物学报, 2013,48(4):447-460. |
TIAN C N, ZHOU Y P. Research progress in plant IQ motif-containing calmodulin-binding proteins [J]. Chin. Bull. Botany, 2013, 48(4): 447-460. | |
2 | ZHOU Y P, DUAN J, FUJIBE T, et al.. AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis [J]. Plant Mol. Biol., 2012,79(4-5):333-346. |
3 | 曾后清, 张亚仙, 汪尚, 等. 植物钙/钙调素介导的信号转导系统[J]. 植物学报, 2016,51(5):705-723. |
ZENG H Q, ZHANG Y X, WANG S, et al.. Calcium/calmodulin-mediated signal transduction systems in plants [J]. Chin. Bull. Bot., 2016,51(5):705-723. | |
4 | DEFALCO T A, BENDER K W, SNEDDEN W A. Breaking the code: Ca2+ sensors in plant signalling [J]. Biochem. J., 2009,425(1):27-40. |
5 | NG C K, MCAINSH M R, GRAY J E, et al.. Calcium-based signalling systems in guard cells [J]. New Phytol., 2001,151(1):109-120. |
6 | ZHOU Y P, WU J H, XIAO W H, et al.. Arabidopsis IQM 4, a novel calmodulin-binding protein, is involved with seed dormancy and germination in Arabidopsis [J/OL]. Front. Plant Sci., 2018,9:721 [2022-06-08].. |
7 | FAN T, LYU T, XIE C, et al.. Genome-wide analysis of the IQM gene family in rice (Oryza sativa L.) [J/OL]. Plants, 2021,10(9):1949 [2022-06-08].. |
8 | PATRA N, HARIHARAN S, GAIN H, et al.. Typical but delicate Ca(2+)re: dissecting the essence of calcium signaling network as a robust response coordinator of versatile abiotic and biotic stimuli in plants [J/OL]. Front. Plant Sci., 2021,12:752246 [2022-06-08]. . |
9 | 罗慧婷, 吕天晓, 范甜, 等. 拟南芥IQM1互作蛋白的筛选与验证[J]. 科技视界, 2018(9):83-84. |
LUO H T, LYU T X, FAN T, et al.. Screening and verification of the protein interacting with IQM1 in Arabidopsis [J]. Sci. Technol. Vision, 2018(9):83-84. | |
10 | 周玉萍, 陈琼华, 陈洁珊, 等. IQM1基因过量表达对拟南芥气孔运动及根系生长的影响[J]. 西北植物学报, 2013,33(5):904-910. |
ZHOU Y P, CHEN Q H, CHEN J S, et al.. Overexpression of Arabidopsis IQM1 gene affects stomatal movement and root growth [J]. Acta Bot. Bor-Occid. Sin., 2013,33(5):904-910. | |
11 | 黄章科, 张艺能, 莫忠蓁, 等. IQ基序突变对AtIQM1的钙调素结合活性的影响[J]. 生物技术通报, 2012,12(21):128-132. |
HUANG Z K, ZHANG Y N, MO Z Q, et al.. Effects of mutations in IQ motif of AtIQM1 on its calmodulin binding [J]. Biotechnol. Bull., 2012,12(21):128-132. | |
12 | 吴骏. 拟南芥IQM2参与成花调控与CaM信号关系的初步研究[D]. 广州:广州大学, 2017. |
WU J. Preliminary study on relationship of IQM2 mediating flowering and CaM signaling in Arabidopsis [D]. Guangzhou: Guangzhou University, 2017. | |
13 | 徐浩, 冯奕嘉, 范甜, 等. 拟南芥IQM3基因突变减少幼苗的侧根数量和增加主根长度[J]. 植物生理学报, 2019,55(5):629-634. |
XU H, FENG Y J, FAN T, et al.. Disruption of IQM3 reduces the number of lateral roots and increases the length of primary root in Arabidopsis seedlings [J]. Plant Physiol. J., 2019,55(5):629-634. | |
14 | 萧文慧, 宋俊威, 黄小玲, 等. 非生物胁迫对拟南芥IQM4基因表达的影响[J]. 科技视界, 2016(16):10-11. |
XIAO W H, SONG J W, HUANG X L, et al.. Effect of abiotic stress on IQM4 gene expression in Arabidopsis thaliana [J]. Sci. Technol. Vision, 2016(16):10-11. | |
15 | 弓路平, 萧文慧, 周玉萍, 等. 拟南芥IQM5.2的克隆、表达及其生物信息学分析[J]. 生物技术通报, 2016,32(5):69-74. |
GONG L P, XIAO W H, ZHOU Y P, et al.. Cloning,expression and bioinformatics analysis of IQM5.2 from Arabidopsis [J]. Biotechnol. Bull.,2016,32(5):69-74. | |
16 | 冯奕嘉, 徐浩, 范甜, 等. 拟南芥IQM6突变推迟远轴面表皮毛的发生[J]. 植物生理学报, 2019,55(6):729-735. |
FENG Y J, XU H, FAN T, et al.. IQM6 mutantion delays initiation of abaxial trichomes in Arabidopsis [J]. Plant Physiol. J., 2019,55(6):729-735. | |
17 | EL-GEBALI S, MISTRY J, BATEMAN A, et al.. The pfam protein families database in 2019 [J/OL]. Nucleic Acids Res., 2019,47(D1):995 [2022-06-08]. . |
18 | LESCOT M, DÉHAIS P, THIJS G, et al.. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences [J/OL]. Nucleic Acids Res., 2002,30(1):325 [2022-06-08]. . |
19 | AROCHO A, CHEN B, LADANYI M, et al.. Validation of the 2-DeltaDeltaCt calculation as an alternate method of data analysis for quantitative PCR of BCR-ABL P210 transcripts [J]. Diagn Mol. Pathol., 2006,15(1):56-61. |
20 | WU M, LI Y, CHEN D, et al.. Genome-wide identification and expression analysis of the IQD gene family in moso bamboo (Phyllostachys edulis) [J/OL]. Sci. Rep., 2016,6:24520 [2022-06-08]. . |
21 | ZHOU Y, CHEN Y, YAMAMOTO K T, et al.. Sequence and expression analysis of the Arabidopsis IQM family [J]. Acta Physiol. Plantarum., 2010,32(1):191-198. |
22 | ZHAO J F, ZHAO L L, ZHANG M, et al.. Arabidopsis E3 ubiquitin ligases PUB22 and PUB23 negatively regulate drought tolerance by targeting ABA receptor PYL9 for degradation [J/OL]. Int. J. Mol. Sci., 2017, 18(9): 1841 [2022-06-08]. . |
23 | 杨华杰, 周玉萍, 范甜, 等. 拟南芥IQM4互作蛋白的筛选和鉴定[J]. 生物技术通报, 2021,37(11):190-196. |
YANG H J, ZHOU Y P, FAN T, et al.. Screening and identification of IQM4-interacting proteins in Arabidopsis thaliana [J]. Biotechnol. Bull., 2021,37(11):190-196. |
[1] | Tongtong ZHENG, Wendi YANG, Ning WANG, Junjie MA, Long LIU, Qingyuan GUO. Morphological and Polygenetic Identification of Pathogen of Wheat Leaf Blight [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 111-118. |
[2] | Yunzhu ZHENG, Shuchen SUN. Effects of Straw Biochar and Straw on Soil Nutrients and Crop Yield in Wheat-Maize Rotation System [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 152-162. |
[3] | Wenhao ZHAO, Jiangtao JI, Hao MA, Xin JIN, Xue LI, Haigang MA. Extraction of Winter Wheat Coverage Based on Improved K-means Algorithm [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 83-91. |
[4] | Ruiqi JIA, Ziang GUO, Chen YAO, Pu LI, Guixiao LA, Xiazi LU, Hongyu GUO, Xuanzhen LI. Effect of Low Phosphorus Stress on Cadmium Uptake in Wheat [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 154-160. |
[5] | Qing LU, Ting LIANG, Weiwei WANG, Dezhou WANG, Xian WU, Xiaoyan WANG, Yimiao TANG. Cloning and Expression Analysis of Wheat Heat Shock Protein Gene TaHSP90-1 [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 44-54. |
[6] | Wenqi ZHANG, Sheng WU, Xinyu GUO, Weiliang WEN, Xianju LU, Chunjiang ZHAO. Evaluation of Plant Self-rotation Multi-view Reconstruction Technique in 3D Phenotype Acquisition of Wheat Plants [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 87-98. |
[7] | Xuejing LIU, Xiaoyuan BAO, Xiaoyang HOU, Wenchao ZHEN. Dynamics of Soil Water Content and Yield Formation Characteristics of Winter Wheat Under Water Limited Irrigation in Spring in Haihe Plain [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 167-176. |
[8] | Yuan YI, Huiyun ZHANG, Liwei LIU, Jing WANG, Xuecheng ZHU, Na ZHAO, Guohua FENG. Effects of Slow-released Fertilizer Compound Humic Acid Instead of Urea on Grain Yield and Population Quality in Xumai New Varieties [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 144-153. |
[9] | Meili LI, Junji SU, Yonglin YANG, Jianghong QIN, Xianxian LI, Delong YANG, Qi MA, Caixiang WANG. Identification of COI Family Genes and Their Expression in Gossypium hirsutum L. Under Drought and Salt Stress [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 63-74. |
[10] | Yinyan GAO, Yi SUN, Baochun LI. Estimating of Wheat Ears Number in Field Based on RGB Images Using Unmanned Aerial Vehicle [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 103-110. |
[11] | Linlin DONG, Jinfang ZHA, Mingxing SHEN, Haihou WANG, Linlin SHI, Yueyue TAO, Xinwei ZHOU, Changying LU. Effect of Long-term Straw Returning on Soil Organic Carbon Fractions Composition in Rice-Wheat Rotation Ecosystem [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 166-175. |
[12] | Xin XU, Zhaowu MA, Shuping XIONG, Xinming MA, Tao CHENG, Haiyang LI, Jinpeng ZHAO. Wheat Yield Forecast in Henan Province Based on Climate Year Type [J]. Journal of Agricultural Science and Technology, 2022, 24(2): 136-144. |
[13] | Yu MENG, Gang TAO, Deqi HUANG, Xiajun YAO. Diversity of Phosphate⁃solubilizing Fungi and Their Applications in Agriculture and Ecology [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 208-217. |
[14] | Jinfeng ZHAO, Aili YU, Yanfang LI, Yanwei DU, Gaohong WANG, Zhenhua WANG. Response Characteristics of SiCBL3 to Abiotic Stresses in Foxtail Millet [J]. Journal of Agricultural Science and Technology, 2022, 24(11): 68-75. |
[15] | Shiqin CAO, Wanjun WANG, Qiuzhen JIA, Qinglin LU, Yaohui ZHANG, Bo ZHANG, Zhenyu SUN, Bin BAI, Jin HUANG. Current Status and Strategies of Winter Wheat Breeding with Reristance to Stripe Rust in Gansu Province [J]. Journal of Agricultural Science and Technology, 2022, 24(10): 109-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||