中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (8): 203-215.DOI: 10.13304/j.nykjdb.2023.0046
• 生物制造 资源生态 • 上一篇
肖锐1,2(), 谭璐1, 吴亮3, 张皓3, 郭佳源1, 杨海君1(
)
收稿日期:
2023-01-19
接受日期:
2023-04-06
出版日期:
2023-08-20
发布日期:
2023-09-07
通讯作者:
杨海君
作者简介:
肖锐 E-mail:2850901@qq.com;
基金资助:
Rui XIAO1,2(), Lu TAN1, Liang WU3, Hao ZHANG3, Jiayuan GUO1, Haijun YANG1(
)
Received:
2023-01-19
Accepted:
2023-04-06
Online:
2023-08-20
Published:
2023-09-07
Contact:
Haijun YANG
摘要:
为探明土壤镉(Cd)胁迫下地肤根际与非根际土壤的理化性质、养分、Cd含量及微生物群落特征,以初始土壤pH 6.1、2.753 mg·kg-1总Cd胁迫下盆栽150 d地肤根际与非根际土壤为研究对象,分析土壤的理化性质、养分和Cd含量变化,并利用高通量测序技术研究土壤细菌、真菌的群落特征。结果表明,Cd胁迫下地肤根际土壤pH及总Cd含量显著低于非根际土壤,而土壤速效磷含量显著高于非根际土壤;根际土壤的有机质、全氮、碱解氮、全磷含量均高于非根际土壤,但差异性不显著。在微生物群落多样性和丰度上,非根际土壤细菌的Shannon指数小于根际土壤,而Simpson、Chao 1指数和ACE指数均大于根际土壤;非根际土壤真菌的Shannon指数、Simpson指数、Chao1指数和ACE指数均大于根际土壤。在门水平上,细菌中绿弯菌门(Chloroflexi)、变形菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)、厚壁菌门(Firmicutes)及其他未知细菌在根际土壤和非根际土壤中相对丰度占比分别为83.22%和70.01%;真菌中子囊菌门(Ascomycota)、担子菌门(Basidiomycota)、壶菌门(Chytridiomycota)、被孢霉门(Mortierellomycota)在非根际土壤和根际土壤中的相对丰度占比分别为97.91%和98.55%。在属水平上,unclassified_Sphingomonadaceae为根际土壤特有细菌属;Cristinia、unclassified_Serendipitaceae、unclassified_Chytridiomycota、腐质霉属(Humicola)、Archaeorhizomyces为根际土壤特有真菌属。综上所述,Cd胁迫下地肤根际土壤微生物群落结构及组成发生了改变,使之与非根际土壤微生物群落组成存在一定差异。以上研究结果为地肤修复土壤Cd污染提供了理论支撑。
中图分类号:
肖锐, 谭璐, 吴亮, 张皓, 郭佳源, 杨海君. 镉胁迫下地肤根际与非根际土壤微生物群落结构及多样性[J]. 中国农业科技导报, 2023, 25(8): 203-215.
Rui XIAO, Lu TAN, Liang WU, Hao ZHANG, Jiayuan GUO, Haijun YANG. Microbial Community Structure and Diversity in Rhizosphere and Non-rhizosphere Soil of Kochia scoparia Under Cd Stress[J]. Journal of Agricultural Science and Technology, 2023, 25(8): 203-215.
土壤类型Soil type | 土壤含水量 Soil water content/% | pH | 有机质Organic matter/(g·kg-1) | 全氮 TN/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 总磷 TP/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 总Cd Total Cd/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
根际土壤 Rhizosphere soil | 23.26±4.61 a | 5.01±0.11 b | 21.71±5.32 a | 3.12±0.95 a | 141.33±31.69 a | 0.72±0.17 a | 52.91±18.91 a | 2.06±0.012 b |
非根际土壤 Non-rhizosphere soil | 23.76±3.98 a | 5.56±0.34 a | 19.83±4.93 a | 3.03±0.87 a | 139.21±33.14 a | 0.68±0.09 a | 42.05±14.85 b | 2.14±0.009 a |
表1 镉胁迫下地肤根际与非根际土壤理化性质、养分及Cd含量
Table 1 Chemical properties, nutrients and total Cd content of rhizosphere and non-rhizosphere soil of Kochia scoparia under Cd stress
土壤类型Soil type | 土壤含水量 Soil water content/% | pH | 有机质Organic matter/(g·kg-1) | 全氮 TN/(g·kg-1) | 碱解氮AN/(mg·kg-1) | 总磷 TP/(mg·kg-1) | 速效磷AP/(mg·kg-1) | 总Cd Total Cd/(mg·kg-1) |
---|---|---|---|---|---|---|---|---|
根际土壤 Rhizosphere soil | 23.26±4.61 a | 5.01±0.11 b | 21.71±5.32 a | 3.12±0.95 a | 141.33±31.69 a | 0.72±0.17 a | 52.91±18.91 a | 2.06±0.012 b |
非根际土壤 Non-rhizosphere soil | 23.76±3.98 a | 5.56±0.34 a | 19.83±4.93 a | 3.03±0.87 a | 139.21±33.14 a | 0.68±0.09 a | 42.05±14.85 b | 2.14±0.009 a |
微生物Microbe | 土壤类型 Soil stype | Shannon指数Shannon index | Simpson指数Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖率 Coverage rate/% |
---|---|---|---|---|---|---|
细菌Bacteria | 非根际土壤 Non-rhizosphere soil | 5.082 4±0.662 4 | 0.032 5±0.030 3 | 1 616.415 4±47.307 0 | 1 660.041 4±30.036 3 | 0.995 3±0.000 6 |
根际土壤 Rhizosphere soil | 5.444 8±0.293 2 | 0.016 2±0.005 2 | 1 575.675 7±78.985 8 | 1 592.241 7±83.179 7 | 0.997 0±0.001 1 | |
P值 P value | 0.46 | 0.45 | 0.49 | 0.29 | — | |
真菌 Fungi | 非根际土壤 Non-rhizosphere soil | 2.555 7±0.147 7 | 0.309 5±0.030 6 | 589.659 0±38.060 7 | 598.972 0±31.759 7 | 0.998 6±0.000 1 |
根际土壤 Rhizosphere soil | 2.418 0±0.119 6 | 0.280 5±0.027 5 | 529.513 8±30.925 0 | 536.916 3±31.206 0 | 0.998 7±0.000 0 | |
P值 P value | 0.28 | 0.29 | 0.10 | 0.073 | — |
表2 Cd胁迫下地肤根际土壤与非根际土壤中细菌和真菌群落的Alpha多样性
Table 2 Alpha index of the bacterial and fungal communities in Schrad.rhizosphere and non-rhizosphere soil of Kochia scoparia under Cd stress
微生物Microbe | 土壤类型 Soil stype | Shannon指数Shannon index | Simpson指数Simpson index | Chao1指数 Chao1 index | ACE指数 ACE index | 覆盖率 Coverage rate/% |
---|---|---|---|---|---|---|
细菌Bacteria | 非根际土壤 Non-rhizosphere soil | 5.082 4±0.662 4 | 0.032 5±0.030 3 | 1 616.415 4±47.307 0 | 1 660.041 4±30.036 3 | 0.995 3±0.000 6 |
根际土壤 Rhizosphere soil | 5.444 8±0.293 2 | 0.016 2±0.005 2 | 1 575.675 7±78.985 8 | 1 592.241 7±83.179 7 | 0.997 0±0.001 1 | |
P值 P value | 0.46 | 0.45 | 0.49 | 0.29 | — | |
真菌 Fungi | 非根际土壤 Non-rhizosphere soil | 2.555 7±0.147 7 | 0.309 5±0.030 6 | 589.659 0±38.060 7 | 598.972 0±31.759 7 | 0.998 6±0.000 1 |
根际土壤 Rhizosphere soil | 2.418 0±0.119 6 | 0.280 5±0.027 5 | 529.513 8±30.925 0 | 536.916 3±31.206 0 | 0.998 7±0.000 0 | |
P值 P value | 0.28 | 0.29 | 0.10 | 0.073 | — |
图5 根际与非根际土壤微生物群落比较注:红色标记表示两种类型土壤间在P<0.05水平差异明显。
Fig. 5 Comparison of microbial communities between rhizosphere and non-rhizosphere soilsNote:Red mark indicates significant difference between rhizosphere and non-rhizosphere soils at P<0.05 level.
图7 地肤根际土壤与非根际土壤微生物群落结构主成分分析
Fig. 7 Principal component analysis of microbial community structure in rhizosphere soil and non-rhizosphere soil of Kochia scoparia
1 | RAMAKRISHNA W, YADAV R, LI K. Plant growth promoting bacteria in agriculture: two sides of a coin [J]. Appl. Soil Ecol., 2019, 138:10-18. |
2 | TENG Y, WANG X M, LI L N, et al.. Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils [J/OL]. Front. Plant Sci., 2015, 6:32 [2022-12-20]. . |
3 | SUGIYAMA A. The soybean rhizosphere: metabolites, microbes, and beyond—a review [J]. J. Adv. Res., 2019, 19(3):67-73. |
4 | LAL S, RATNA S, SAID O B, et al.. Biosurfactant and exopolysaccharide-assisted rhizobacterial technique for the remediation of heavy metal contaminated soil: an advancement in metal phytoremediation technology [J]. Environ. Technol. Innov., 2018, 10(5):243-263. |
5 | ZHAO X, HUANG J, LU J, et al.. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine [J]. Ecotoxicol. Environ. Saf., 2019, 170(4):218-226. |
6 | DAS S, CHOU M L, JEAN J S, et al.. Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata [J]. J. Hazard. Mater., 2017, 325(3):279-287. |
7 | XIAO E, NING Z, XIAO T, et al.. Variation in rhizosphere microbiota correlates with edaphic factor in an abandoned antimony tailing dump [J]. Environ. Pollut., 2019, 253(10):141-151. |
8 | YANG Q, TU S, WANG G, et al.. Effectiveness of applying arsenate reducing bacteria to enhance arsenic removal from polluted soils by Pteris vittata L [J]. Int. J. Phytoremediat., 2012, 14(1):89-99. |
9 | CHENG L, CORD-RUWISCH R, SHAHIN M A. Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation [J]. Can. Geotech. J., 2013, 50(1):81-90. |
10 | HOU J, LIU W, WU L, et al.. Rhodococcus sp. NSX2 modulates the phytoremediation efficiency of a trace metal-contaminated soil by reshaping the rhizosphere microbiome [J]. Appl. Soil Ecol., 2019, 133(1):62-69. |
11 | KUPPUSAMY S, THAVAMANI P, MEGHARAJ M, et al.. Pyrosequencing analysis of bacterial diversity in soils contaminated long-term with PAHs and heavy metals: implications to bioremediation [J]. J. Hazard. Mater., 2016, 317(11):169-179. |
12 | LI X, MENG D, LI J, et al.. Response of soil microbial communities and microbial interactions to long-term heavy metal contamination [J]. Environ. Pollut., 2017, 231(12):908-917. |
13 | NARENDRULA-KOTHA R, NKONGOLO K K. Bacterial and fungal community structure and diversity in a mining region under long-term metal exposure revealed by metagenomics sequencing [J]. Ecol. Genet. Genomics, 2017, 2(2):13-24. |
14 | GUO H, NASIR M, LV J, et al.. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing [J]. Ecotoxicol. Environ. Saf., 2017, 144(10):300-306. |
15 | WU B H, LUO S H, LUO H Y, et al.. Improved phytoremediation of heavy metal contaminated soils by Miscanthus floridulus under a varied rhizosphere ecological characteristic [J/OL]. Sci. Total Environ., 2022, 808(2):151995 [2022-12-20]. . |
16 | 麻莹,王晓苹,姜海波,等.盐碱胁迫下碱地肤体内的有机酸积累及其草酸代谢特点[J].草业学报,2017,26(7):158-165. |
MA Y, WANG X P, JIANG H B, et al.. Characteristics of organic acids accumulation and oxalate metabolism in Kochia sieversiana under salt and alkali stresses [J]. Acta Pratac. Sin., 2017, 26(7):158-165. | |
17 | ENDO T, KUBO‐NAKANO Y, LOPEZ R A, et al.. Growth characteristics of kochia (Kochia scoparia L.) and alfalfa (Medicago sativa L.) in saline environments [J]. Grassl. Sci., 2014, 60(4):225-232. |
18 | AIHEMAITI A, JIANG J, LIU N, et al.. The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area [J]. J. Environ. Manage., 2018, 222(9):216-226. |
19 | HUANG N, TANG L, ZHU F, et al.. Salt ions accumulation and distribution characteristics of pioneer plant species at a bauxite residue disposal area, China [J]. J. Cent. South Univ., 2019, 26(2):323-330. |
20 | 陆俏,代政,崔梦萦,等.地肤对硼的耐受及富集能力研究[J].农业环境科学学报,2017,36(12):2407-2413. |
LU Q, DAI Z, CUI M Y, et al.. Boron tolerance and accumulation in Kochia scoparia [J]. J. Agro-Environ. Sci., 2017, 36(12):2407-2413. | |
21 | 张家洋,冯明,许飞,等.锌镉单一胁迫荠菜和地肤子的生长特性及对重金属的积累特征[J].西南林业大学学报(自然科学),2019,39(1):43-49. |
ZHANG J Y, FENG M, XU F, et al.. The Growth characteristics and accumulation abilities of heavy metals of Brassica juncea and Kochia scoparia under Zn and Cd stress [J]. J. Southwest For. Univ. (Nat. Sci.), 2019, 39(1):43-49. | |
22 | YANG L P, ZHU J, WANG P, et al.. Effect of Cd on growth, physiological response Cd subcellular distribution and chemical forms of Koelreuteria paniculata [J]. Ecotoxicol. Environ. Saf., 2018, 160(9):10-18. |
23 | 杨海君,郭佳源,谭菊,等.镉胁迫对2种酸性土壤地肤生长及其修复镉能力的影响[J].中国环境科学,2023, 43(5):2423-2433. |
YANG H J, GUO J Y, TAN J, et al.. Effects of cadmium stress on the growth and cadmium remediation of Kochia Scoparia in two kinds of acid soils [J]. China Environ. Sci., 2023, 43(5):2423-2433. | |
24 | 中国科学院南京土壤研究所. 土壤理化分析[M].上海:上海科学技术出版社,1978:153-182. |
25 | 鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:221-259. |
26 | 周天阳,高景,王金牛,等.基于群落结构及土壤理化性质对围封7年青藏高原东南缘高山草地的综合评价[J].草业学报,2018, 27(12):1-11. |
ZHOU T Y, GAO J, WANG J N, et al.. Effects of 7-year enclosure on an alpine meadow at the south-eastern margin of Tibetan Plateau based on community structure and soil physico-chemical properties [J]. Acta Pratac. Sin., 2018, 27(12):1-11. | |
27 | 彭金根,龚金玉,范玉海,等.毛棉杜鹃根际与非根际土壤微生物群落多样性[J].林业科学,2022, 25(2): 89-99. |
PENG J G, GONG J Y, FAN Y H, et al.. Diversity of soil microbial communities in rhizosphere and non-rhizosphere of Rhododendron moulmainense [J]. Sci. Silvae Sin., 2022, 25(2):89-99. | |
28 | 鲍士旦.土壤农化分析[M].第三版.北京:中国农业出版社,2000:122-180. |
29 | 许晴,张放,许中旗,等. Simpson指数和Shannon-Wiener指数若干特征的分析及“稀释效应”[J].草业科学,2011,28(4):527-531. |
XU Q, ZHANG F, XU Z Q, et al.. Some characteristics of Simpson index and the Shannon-Wiener index and their dilution effect [J]. Pratac. Sci., 2011, 28(4):527-531. | |
30 | 尹原森,马国胜,曹春燕,等.不同地区凤丹根际土壤微生物功能多样性分析[J].分子植物育种,2021,19(20):6918-6926. |
YIN Y S, MA G S, CAO C Y, et al.. Soil rhizosphere microbial functional diversity analysis of Fengdan (Paeonia ostii) in three different regions [J]. Mol. Plant Breeding, 2021, 19(20):6918-6926. | |
31 | 王博,覃芳,史艳财,等.小花异裂菊根际与非根际微生物功能多样性比较[J].广西师范大学学报(自然科学版): 2022: 40(5): 237-246. |
WANG B, QIN F, SHI Y C, et al.. Comparison of microbial functional diversity between rhizosphere and non-rhizosphere of Heteroplexis microcephala, an peculiar plants in karst area [J]. J. Guangxi Norm. Univ. (Nat. Sci.), 2022: 40(5): 237-246. | |
32 | TIMMUSK S, PAALME V, PAVLICEK T, et al.. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates [J/OL]. PloS ONE, 2011, 6(3):e17968 [2022-12-20]. . |
33 | LIU C, LIN H, LI B, et al.. Responses of microbial communities and metabolic activities in the rhizosphere during phytoremediation of Cd-contaminated soil [J/OL]. Ecotoxicol. Environ. Saf., 2020, 202:110958 [2022-12-20]. . |
34 | 金裕华,邹涛,康薇,等.木本植物修复对重金属污染土壤微生物多样性及土壤肥力的影响[J].湖北理工学院学报,2018,34(6):15-19. |
JIN Y H, ZOU T, KANG W, et al.. Effects of woody phytoremediation on microbial diversity and soil fertility in heavy metal contaminated soil [J]. J. Hubei Polytechnic Univ., 2018, 34(6):15-19. | |
35 | 卞方圆,钟哲科,张小平,等.毛竹和伴矿景天对重金属污染土壤的修复作用和对微生物群落的影响[J].林业科学,2018,54(8):106-116. |
BIAN F Y, ZHONG Z K, ZHANG X P, et al.. Remediation of heavy metal contaminated soil by Moso bamboo (Phyllostachys edulis) intercropping with Sedum plumbizincicola and the impact on microbial community structure [J]. Sci. Silvae Sin., 2018, 54(8):106-116. | |
36 | 吴秋芳,侯立江,何玲敏,等.北艾根际与非根际土壤微生物多样性的高通量测序分析[J].河南农业大学学报,2021,55(5):928-935. |
WU Q F, HOU L J, HE L M, et al.. Illumina next-generation sequencing analysis of microbial diversity in rhizosphere and non-rhizosphere soils of Artemisia vulgaris L. [J]. J. Henan Agric. Univ., 2021, 55(5):928-935. | |
37 | KAPLAN H, RATERING S, HANAUER T, et al.. Impact of trace metal contamination and in situ remediation on microbial diversity and respiratory activity of heavily polluted kastanozems [J]. Biol. Fert. Soils, 2014, 50(5):735-744. |
38 | YANG C B, YAN K R, MA C N, et al.. Insight into the root growth, soil quality, and assembly of the root-associated microbiome in the virus-free Chrysanthemum morifolium [J/OL]. Ind. Crops Prod., 2022, 176:114362 [2022-12-20]. |
39 | YANG J, DUAN Y, ZHANG R, et al.. Connecting soil dissolved organic matter to soil bacterial community structure in a long-term grass-mulching apple orchard [J/OL]. Ind. Crops Prod., 2020, 149:112344 [2022-12-20]. . |
40 | YANG C, ZHANG X, NI H, et al.. Soil carbon and associated bacterial community shifts driven by fine root traits along a chronosequence of Moso bamboo (Phyllostachys edulis) plantations in subtropical China [J/OL]. Sci. Total Environ., 2021, 752:142333 [2022-12-20]. . |
41 | 李华伟,罗文彬,许国春,等.基于高通量测序的福建北部马铃薯晚疫病株根际土壤细菌群落分析[J].微生物学通报,2022, 49(3):1017-1029. |
LI H W, LUO W B, XU G C, et al.. High-throughput sequencing of bacterial community in the rhizosphere soil of potato infected by late blight in northern Fujian province [J]. Microbiology, 2022, 49(3):1017-1029. | |
42 | JIANG B, ADEBAYO A, JIA J, et al.. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community [J]. J. Hazard. Mater., 2019, 362(1):187-195. |
43 | GUPTA R S, CHANDER P, GEORGE S. Phylogenetic framework and molecular signatures for the class Chloroflexi and its different clades; proposal for division of the class Chloroflexi class. nov. into the suborder Chloroflexineae subord. nov., consisting of the emended family Oscillochloridaceae and the family Chloroflexaceae fam. nov., and the suborder Roseiflexineae subord. nov., containing the family Roseiflexaceae fam. Nov [J]. Antonie Van Leeuwenhoek, 2013, 103(1):99-119. |
44 | TAJ Z Z, RAJKUMAR M. Perspectives of Plant Growth-promoting Actinomycetes in Heavy Metal Phytoremediation [M]. Singapore: Plant Growth Promoting Actinobacteria, Springer, 2016:213-231. |
45 | CÁLIZ J, MONTSERRAT G, MARTÍ E, et al.. Emerging resistant microbiota from an acidic soil exposed to toxicity of Cr, Cd and Pb is mainly influenced by the bioavailability of these metals [J]. J. Soils Sediment., 2013, 13(2):413-428. |
46 | BARNS S M, CAIN E C, SOMMERVILLE L, et al.. Acidobacteria phylum sequences in uranium-contaminated subsurface sediments greatly expand the known diversity within the phylum [J]. Appl. Environ. Microbiol., 2007, 73(9):3113-3116. |
47 | YAN S, ZHAO J, REN T, et al.. Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers [J/OL]. Ind. Crops Prod., 2020, 151:112454 [2022-12-20]. . |
48 | YAN K R, ZHANG Y H, YANG C B, et al.. First report of sweet potato feathery mottle virus infecting Chrysanthemum morifolium in China [J]. Plant Dis., 2020, 104(12):3273-3273. |
49 | BANERJEE S, SCHLAEPPI K, VAN DER HEIJDEN M G A. Keystone taxa as drivers of microbiome structure and functioning [J]. Nat. Rev. Microbiol., 2018, 16(9):567-576. |
50 | AL-SADI A M, AL-KHATRI B, NASEHI A, et al.. High fungal diversity and dominance by ascomycota in dam reservoir soils of arid climates [J]. Int. J. Agric. Biol., 2017, 19(4):682-688. |
51 | AL-SADI A M, AL-MAZROUI S S, PHILLIPS A J L. Evaluation of culture-based techniques and 454 pyrosequencing for the analysis of fungal diversity in potting media and organic fertilizers [J]. J. Appl. Microbiol., 2015, 119(2):500-509. |
52 | CHALLACOMBE J F, HESSE C N, BRAMER L M, et al.. Genomes and secretomes of Ascomycota fungi reveal diverse functions in plant biomass decomposition and pathogenesis [J/OL]. BMC Genomics, 2019, 20(1):976 [2022-12-20]. . |
53 | LIN Y B, YE Y M, HU Y M, et al.. The variation in microbial community structure under different heavy metal contamination levels in paddy soils [J]. Ecotoxicol. Environ. Saf., 2019, 180(9):557-564. |
54 | SANCHEZ-CASTRO I, GIANINAZZI-PEARSON V, CLEYET-MAREL J C, et al.. Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site [J]. Sci. Total Environ., 2017, 598(11):121-128. |
55 | TIAN T, CHEN Z Q, TIAN Y Q, et al.. Microbial diversity in solar greenhouse soils in Round-Bohai Bay-Region, China: the influence of cultivation year and environmental condition [J]. Environ. Sci. Pollut. Res., 2017, 24(29):23236-23249. |
56 | MIAO C P, MI Q L, QIAO X G, et al.. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens [J]. J. Ginseng Res., 2016, 40(2):127-134. |
57 | EZZOUHRI L, CASTRO E, MOYA M, et al.. Heavy metal tolerance of filamentous fungi isolated from polluted sites in Tangier, Morocco [J]. Afr. J. Microbiol. Res., 2009, 3(2):35-48. |
58 | FRÖHLICH-NOWOISKY J, HILL T C J, PUMMER B G, et al.. Ice nucleation activity in the widespread soil fungus Mortierella alpina [J]. Biogeosciences, 2015, 12(4):1057-1071. |
[1] | 张晨阳, 徐明岗, 王斐, 李然, 孙楠. 施用有机肥对我国大豆产量及土壤养分的影响[J]. 中国农业科技导报, 2023, 25(8): 148-156. |
[2] | 杜彩艳, 鲁海燕, 熊艳竹, 孙曦, 孙秀梅, 普继雄, 张乃明. 连续两年沼液与化肥配施对桃生长及土壤理化性质的影响[J]. 中国农业科技导报, 2023, 25(8): 165-175. |
[3] | 吴香, 李娟, 曹艳, 程艳荣, 闫旭宇, 李玲. 植物根系分泌物响应镉胁迫的研究进展[J]. 中国农业科技导报, 2023, 25(7): 12-20. |
[4] | 尹兴盛, 包玲凤, 濮永瑜, 孙加利, 张庆, 李海平, 杨明英, 林跃平, 王怀鑫, 何永宏, 杨佩文. 减氮配施生物有机肥对植烟土壤特性及烟草青枯病的防效研究[J]. 中国农业科技导报, 2023, 25(7): 122-131. |
[5] | 刘宏元, 周志花, 赵光昕, 沈钦瑞. 黄淮海平原农田土壤温室气体排放对长期施加生物炭的响应[J]. 中国农业科技导报, 2023, 25(7): 178-186. |
[6] | 庞喆, 王启龙, 李娟. 不同土壤改良剂对陕北低洼盐碱地土壤理化性质及水稻产量和经济效益的影响[J]. 中国农业科技导报, 2023, 25(6): 174-180. |
[7] | 刘宏元, 周志花, 赵光昕, 王艳君, 王娜娜. 改性纤维素对旱稻萌发和旱地土壤性质的影响[J]. 中国农业科技导报, 2023, 25(5): 168-175. |
[8] | 孟璐, 范敬文, 赛欣娱, 曾路生, 宋祥云, 崔德杰. 石灰对苹果园土壤改良和植株生长的影响[J]. 中国农业科技导报, 2023, 25(4): 197-204. |
[9] | 姚佳, 刘加欣, 苏焱, 苏小娟. 烟杆炭配施氮肥对玉米苗期生长及土壤特性的影响[J]. 中国农业科技导报, 2023, 25(3): 140-151. |
[10] | 聂婷婷, 董乙强, 杨合龙, 阿斯太肯·居力海提, 周时杰, 安沙舟. 围栏封育对蒿类荒漠植物-土壤碳氮磷化学计量特征的影响[J]. 中国农业科技导报, 2023, 25(3): 178-187. |
[11] | 刘云飞, 韦凤杰, 夏茂林, 于兆锦, 夏昊, 衣春宇, 常剑波, 姬小明. 新型复合水凝胶对镉胁迫烟草幼苗的缓解效应[J]. 中国农业科技导报, 2023, 25(3): 188-197. |
[12] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
[13] | 卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115. |
[14] | 陈奎元, 刘卉, 丁伟. 草甘膦对大豆田土壤养分及其功能酶活性的影响[J]. 中国农业科技导报, 2022, 24(5): 180-188. |
[15] | 魏艳晨, 陈吉祥, 王永刚, 孟彤彤, 韩亚龙, 李美. 荒漠植物珍珠猪毛菜根际土壤细菌多样性与土壤理化性质相关性分析[J]. 中国农业科技导报, 2022, 24(5): 209-217. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||