中国农业科技导报 ›› 2023, Vol. 25 ›› Issue (3): 152-160.DOI: 10.13304/j.nykjdb.2022.0512
• 生物制造 资源生态 • 上一篇
收稿日期:
2022-06-21
接受日期:
2022-09-17
出版日期:
2023-03-15
发布日期:
2023-05-22
作者简介:
靳建刚 E-mail:sxyyjjg@126.com
基金资助:
Jiangang JIN1(), Zaifang TIAN1, Minna ZHENG2, Jiahui KANG2
Received:
2022-06-21
Accepted:
2022-09-17
Online:
2023-03-15
Published:
2023-05-22
摘要:
为探讨不同施肥处理下燕麦根际土壤细菌群落多样性的差异,设置不施肥(CK)、仅施用商用化肥(T2)和商用化肥与有机肥分别按照9∶1(T3)、8∶2(T4)、7∶3(T5)、6∶4(T6)和5∶5(T7)的比例配施共7个处理,研究不同处理对土壤养分状况和细菌群落多样性的影响。结果表明,与CK相比,无机-有机肥料配施时,土壤有效钾和有效磷含量明显提高,可溶解性盐含量显著降低,其中T4处理的燕麦生物量最高。在门水平上,7个处理的土壤细菌样品共获得28个类群,使用线性判别分析效应大小对各处理进行比较,发现T4、T5处理中的优势菌群更有利于土壤正向演替和植物生长。不同环境因素变化对不同微生物菌群的影响不同,冗余分析(redundancy analysis,RDA)表明土壤全氮、有效磷、有机碳和有机钾含量对细菌群落有显著影响。综合分析表明,T4处理的土壤化学特性和优势菌群更有利于土壤和植物可持续生产。
中图分类号:
靳建刚, 田再芳, 郑敏娜, 康佳惠. 不同施肥措施对饲用燕麦土壤细菌群落多样性的影响[J]. 中国农业科技导报, 2023, 25(3): 152-160.
Jiangang JIN, Zaifang TIAN, Minna ZHENG, Jiahui KANG. Effect of Different Fertilization Measures on the Diversity of Soil Bacteria Communities in Fed oats (Avena sativa L.)[J]. Journal of Agricultural Science and Technology, 2023, 25(3): 152-160.
处理Treatment | CO(NH2)2/(kg·hm-2) | P2O5/(kg·hm-2) | K2O/(kg·hm-2) | 有机肥Organic fertilizer/(m3·hm-2) |
---|---|---|---|---|
CK | 0 | 0.0 | 0 | 0 |
T2 | 180 | 90.0 | 90 | 0 |
T3 | 162 | 84.9 | 81 | 18 |
T4 | 144 | 79.8 | 72 | 36 |
T5 | 126 | 74.7 | 63 | 54 |
T6 | 108 | 69.6 | 51 | 72 |
T7 | 90 | 64.5 | 45 | 90 |
表 1 试验各处理的肥料施用量
Table 1 Specific information processed by the experiment
处理Treatment | CO(NH2)2/(kg·hm-2) | P2O5/(kg·hm-2) | K2O/(kg·hm-2) | 有机肥Organic fertilizer/(m3·hm-2) |
---|---|---|---|---|
CK | 0 | 0.0 | 0 | 0 |
T2 | 180 | 90.0 | 90 | 0 |
T3 | 162 | 84.9 | 81 | 18 |
T4 | 144 | 79.8 | 72 | 36 |
T5 | 126 | 74.7 | 63 | 54 |
T6 | 108 | 69.6 | 51 | 72 |
T7 | 90 | 64.5 | 45 | 90 |
处理 Treatment | 全氮 TN/% | 速效氮 AN/(mg·kg-1) | 速效钾 AK/(mg·kg-1) | 速效磷 AP/(mg·kg-1) | 有机碳SOC/(g·kg-1) | 可溶解性盐SS/(g·kg-1) | 株高 PH/cm | 干草产量 Y/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|
CK | 3.10±0.22 a | 182.46±9.24 a | 189.36±21.02 c | 8.49±0.69 b | 32.18±0.12 a | 3.83±0.06 a | 89.36±4.35 c | 6 888.75±709.48 c |
T2 | 3.25±0.21 a | 185.62±10.76 a | 219.34±45.36 bc | 9.88±0.25 b | 30.25±3.26 a | 2.63±0.05 b | 92.68±3.97 bc | 7 684.70±606.58 b |
T3 | 3.51±0.09 a | 177.67±2.13 a | 205.34±25.31 bc | 9.34±1.36 b | 29.18±2.64 a | 2.40±0.03 b | 97.21±2.96 b | 7 729.66±883.55 b |
T4 | 3.52±0.28 a | 194.32±14.32 a | 263.14±56.34 b | 11.09±0.96 a | 32.09±4.39 a | 1.62±0.35 c | 107.32±5.34 a | 9 245.55±992.84 a |
T5 | 3.47±0.16 a | 187.26±3.69 a | 259.12±16.98 b | 10.23±0.98 ab | 32.34±1.28 a | 1.61±0.12 c | 101.25±6.78 ab | 8 976.04±712.23 ab |
T6 | 3.56±0.26 a | 179.32±6.90 a | 229.41±15.24 bc | 9.21±1.24 b | 29.32±2.22 a | 1.54±0.01 c | 98.36±4.31 b | 8 706.09±785.26 ab |
T7 | 3.40±0.17 a | 170.36±5.98 a | 298.99±30.67 a | 9.82±0.06 b | 30.11±4.35 a | 1.53±0.03 c | 98.45±2.57 b | 8 178.99±861.23 b |
表2 不同处理下土壤理化性质和干草生物量
Table 2 Physical and chemical properties of soil and biomass of oats under different treatments
处理 Treatment | 全氮 TN/% | 速效氮 AN/(mg·kg-1) | 速效钾 AK/(mg·kg-1) | 速效磷 AP/(mg·kg-1) | 有机碳SOC/(g·kg-1) | 可溶解性盐SS/(g·kg-1) | 株高 PH/cm | 干草产量 Y/(kg·hm-2) |
---|---|---|---|---|---|---|---|---|
CK | 3.10±0.22 a | 182.46±9.24 a | 189.36±21.02 c | 8.49±0.69 b | 32.18±0.12 a | 3.83±0.06 a | 89.36±4.35 c | 6 888.75±709.48 c |
T2 | 3.25±0.21 a | 185.62±10.76 a | 219.34±45.36 bc | 9.88±0.25 b | 30.25±3.26 a | 2.63±0.05 b | 92.68±3.97 bc | 7 684.70±606.58 b |
T3 | 3.51±0.09 a | 177.67±2.13 a | 205.34±25.31 bc | 9.34±1.36 b | 29.18±2.64 a | 2.40±0.03 b | 97.21±2.96 b | 7 729.66±883.55 b |
T4 | 3.52±0.28 a | 194.32±14.32 a | 263.14±56.34 b | 11.09±0.96 a | 32.09±4.39 a | 1.62±0.35 c | 107.32±5.34 a | 9 245.55±992.84 a |
T5 | 3.47±0.16 a | 187.26±3.69 a | 259.12±16.98 b | 10.23±0.98 ab | 32.34±1.28 a | 1.61±0.12 c | 101.25±6.78 ab | 8 976.04±712.23 ab |
T6 | 3.56±0.26 a | 179.32±6.90 a | 229.41±15.24 bc | 9.21±1.24 b | 29.32±2.22 a | 1.54±0.01 c | 98.36±4.31 b | 8 706.09±785.26 ab |
T7 | 3.40±0.17 a | 170.36±5.98 a | 298.99±30.67 a | 9.82±0.06 b | 30.11±4.35 a | 1.53±0.03 c | 98.45±2.57 b | 8 178.99±861.23 b |
处理 Treatment | 序列数 Raw read | OTU数量Number of OTUs | 覆盖度 Good’s coverage | Ace指数 Ace index | Shannon指数 Shannon index | Chao1指数 Chao l index |
---|---|---|---|---|---|---|
CK | 777 095 | 1 533±35.23 b | 0.999 0±0.00 a | 820.16±36.21 c | 8.21±1.23 bcd | 858.71±12.31 d |
T2 | 77 453 | 1 748±38.96 a | 0.999 2±0.00 a | 996.07±38.22 c | 7.86±1.11 cd | 1 052.72±14.33 cd |
T3 | 68 494 | 1 375±29.64 c | 0.999 8±0.01 a | 953.15±37.26 c | 8.26±1.20 bcd | 1 022.57±13.98 cd |
T4 | 77 349 | 1 680±37.12 a | 0.999 4±0.01 a | 1 457.67±41.23 a | 8.36±1.19 bc | 1 485.35±15.94 a |
T5 | 77 839 | 1 352±28.11 c | 0.996 5±0.00 a | 1 241.51±40.62 b | 7.76±1.05 d | 1 252.65±14.35 bc |
T6 | 77 219 | 1 388±28.31 c | 0.999 0±0.00 a | 1 497.45±42.54 a | 8.93±1.15 a | 1 531.94±16.01 a |
T7 | 78 013 | 1 213±26.86 c | 0.999 7±0.00 a | 1 360.74±41.78 ab | 8.64±1.12 ab | 1 431.60±15.87 ab |
表 3 不同改良措施处理下土壤细菌测序及群落α 多样性指数
Table 3 Bacterial sequencing and community α diversity index of soil treated with different improvement measures
处理 Treatment | 序列数 Raw read | OTU数量Number of OTUs | 覆盖度 Good’s coverage | Ace指数 Ace index | Shannon指数 Shannon index | Chao1指数 Chao l index |
---|---|---|---|---|---|---|
CK | 777 095 | 1 533±35.23 b | 0.999 0±0.00 a | 820.16±36.21 c | 8.21±1.23 bcd | 858.71±12.31 d |
T2 | 77 453 | 1 748±38.96 a | 0.999 2±0.00 a | 996.07±38.22 c | 7.86±1.11 cd | 1 052.72±14.33 cd |
T3 | 68 494 | 1 375±29.64 c | 0.999 8±0.01 a | 953.15±37.26 c | 8.26±1.20 bcd | 1 022.57±13.98 cd |
T4 | 77 349 | 1 680±37.12 a | 0.999 4±0.01 a | 1 457.67±41.23 a | 8.36±1.19 bc | 1 485.35±15.94 a |
T5 | 77 839 | 1 352±28.11 c | 0.996 5±0.00 a | 1 241.51±40.62 b | 7.76±1.05 d | 1 252.65±14.35 bc |
T6 | 77 219 | 1 388±28.31 c | 0.999 0±0.00 a | 1 497.45±42.54 a | 8.93±1.15 a | 1 531.94±16.01 a |
T7 | 78 013 | 1 213±26.86 c | 0.999 7±0.00 a | 1 360.74±41.78 ab | 8.64±1.12 ab | 1 431.60±15.87 ab |
图3 不同改良措施下土壤细菌群落系统发育树注:不同分类级别的每个圆圈表示该级别的分类,黄色表示丰度没有显著变化,圆形直径的大小表示相对丰度。
Fig. 3 Cladogram of soil bacterial community under different treatmentsNote: Each circle at a different classification level represents the classification at that level, yellow indicates no significant change in relative abundance, diameter of the circular indicates relative abundance.
图4 属水平上不同施肥处理下土壤细菌的相对丰度和土壤环境因子间的RDA分析
Fig. 4 RDA analysis of soil bacteria relative abundance and among soil environmental factors under different fertilization
环境因子 Environmental factor | 相关系数 Correlation coefficient | P值P value |
---|---|---|
全氮TN | 0.213 4 | 0.004 |
速效氮AN | 0.413 6 | 0.004 |
速效钾AK | 0.483 2 | 0.050 |
速效磷AP | 0.589 6 | 0.001 |
有机碳SOC | 0.493 1 | 0.003 |
可溶解性盐SS | 0.096 7 | 0.050 |
表4 基于属水平的细菌群落和环境因子之间相关分析
Table 4 Correlation analysis between bacterial communities and environmental factors at the genus level
环境因子 Environmental factor | 相关系数 Correlation coefficient | P值P value |
---|---|---|
全氮TN | 0.213 4 | 0.004 |
速效氮AN | 0.413 6 | 0.004 |
速效钾AK | 0.483 2 | 0.050 |
速效磷AP | 0.589 6 | 0.001 |
有机碳SOC | 0.493 1 | 0.003 |
可溶解性盐SS | 0.096 7 | 0.050 |
1 | 陈宝书.牧草饲料作物栽培学[M].北京:中国农业出版社,2001:10-23. |
CHEN B S. Forage and Forage Crop Cultivation Studies [M]. Beijing: China Agricultural Press, 2001:10-23. | |
2 | 赵秀芳,戎郁萍,赵来喜.我国燕麦种质资源的收集和评价[J].草业科学,2007,24(3)36-40. |
ZHAO X F, RONG Y P, ZHAO L X. The collection of oat (Avena sativa) in China [J]. Pratac. Sci., 2007, 24(3):36-40. | |
3 | 李刚,郑敏娜,李荫藩.饲用燕麦品种在晋北农牧交错区的生产性能和营养价值研究[J].中国农业科技导报,2021,23(12):42-53. |
LI G, ZHENG M N, LI Y F. Study on the production performance and nutritional value of fed oat varieties in northern Shanxi province [J]. J. Agric. Sci. Technol., 2021, 23(12):42-53. | |
4 | 侯龙鱼,朱泽义,杨杰,等.我国饲草用燕麦现状、问题和潜力[J].西南民族大学学报(自然科学版),2019,45(3):248-253. |
HOU L Y, ZHU Z Y, YANG J, et al.. Current status, problems and potentials of forage oat in China [J]. J. Southwest Univ. Nat. (Nat. Sci.), 2019, 45(3):248-253. | |
5 | 李生仪,孙延亮,赵俊威,等.施氮对苜蓿根际土壤微生物数量、酶活性及干草产量的影响[J].中国草地学报,2022, 44(4):113-119. |
LI S Y, SUN Y L, ZHAO J W, et al.. Effect of nitrogen application on microbial quantity, enzyme activity and hay yield in alfalfa rhizosphere [J]. Chin. J. Grassland, 2022, 44(4):113-119. | |
6 | VOURLITIS G L, ZORBA G, PASQUINII S C, et al.. Chronic nitrogen deposition enhances nitrogen mineralization potential of semiarid shrubland soils [J]. Soil Sci. Soc. J., 2007, 123(1):836-842. |
7 | ZEGLIN L H, STURSOVA M, SINSABAUGH R L, et al.. Microbial responses to nitrogen addition in three contrasting grassland ecosystems [J]. Oecologia, 2007, 154(2):349-359. |
8 | 郑敏娜,梁秀芝,韩志顺,等.不同改良措施对盐碱土土壤细菌群落多样性的影响[J].草地学报,2021,29(6):1200-1210. |
ZHENG M N, LIANG X Z, HAN Z S, et al.. Effects of different improvement measures on the diversity of soil bacteria communities in salt-alkali soil [J]. Acta Agrestia Sin., 2021, 29(6):1200-1210. | |
9 | 商丽荣,万里强,李向林.有机肥对羊草草原土壤细菌群落多样性的影响[J].中国农业科学,2020,53(13):2614-2624. |
SHANG L R, WAN L Q, LI X L. Effects of organic fertilizer on soil bacterial community diversity in Leymus chinensis steppe [J]. Sci. Agric. Sin., 2020, 53(13):2614-2624. | |
10 | 鲍士旦. 土壤农化分析[M].北京:中国农业出版社,2001:1-495. |
11 | WU M, QIN H, CHEN Z, et al.. Effect of long-term fertilization on bacterial composition in rice paddy soil [J]. Biol. Fert. Soils, 2011, 47:397-405. |
12 | DAQUIADO A R, KUPPUSAMY S, KIM S Y, et al.. Pyrosequencing analysis of bacterial community diversity in long-term fertilized paddy field soil [J]. Appl. Soil Ecol., 2016, 108:84-91. |
13 | ZHONG W H, GU T, WANG W, et al.. The effects of mineral fertilizer and organic manure on soil microbial community and diversity [J]. Plant Soil, 2010, 326(1/2):511-522. |
14 | 樊晓刚,金轲,李兆君,等.不同施肥和耕作制度下土壤微生物多样性研究进展[J].植物营养与肥料学报, 2010,16(3) :744-751. |
FAN X G, JIN K, LI Z J, et al.. Progress in soil microbial diversity under different fertilization and tillage systems [J]. Plant Nutr. Fert. Sci., 2010, 16(3):744-751. | |
15 | ZHAO J, ZHANG R F, XUE C, et al.. Pyrosequencing reveals contrasting soil bacterial diversity and community structure of two main winter wheat cropping systems in China [J]. Microb. Ecol., 2014, 67: 443-453. |
16 | 苏贝贝,张英,道日娜.4种豆科栽培牧草根际土壤细菌群落分布特征研究[J].草地学报,2021,29(2):250-258. |
SU B B, ZHANG Y, DAO R N. Distribution of bacterial communities in rhizosphere of four legume cultivated grasses [J]. Acta Agrestia Sin., 2021, 29(2):250-258. | |
17 | SUN R, ZHANG X, GUO X, et al.. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw [J]. Soil Biol. Biochem., 2015, 88(9):9-18. |
18 | GE G, LI Z, FAN F, et al.. Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers [J]. Plant Soil, 2010, 326:31-44. |
19 | XU J, LIU S J, SONG S R, et al.. Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability [J]. Soil Biol. Biochem., 2018, 20:181-190. |
20 | KOPECKY J, KYSELKOVA M, OMELKA M, et al.. Actinobacterial community dominated by a distinct clade in acidic soil of a waterlogged deciduous forest [J]. FEMS Microb. Ecol., 2011, 78(2):386-394. |
21 | SUN J, ZHANG Q, ZHOU J, et al.. Pyrosequencing technology reveals the impact of different manure doses on the bacterial community in apple rhizosphere soil [J]. Appl. Soil Ecol., 2014, 78:28-36. |
22 | 卡着才让, 德科加, 徐成体.不同施肥时间及施氮水平对高寒草甸生物量和土壤养分的影响[J].草地学报, 2015, 23(4): 726-732. |
KA Z C R, DE K J, XU C T, et al.. The effects of different fertilization time and nitrogen application levels on biomass and soil nutrients in Alpine meadow [J]. Acta Agrestia Sin., 2015, 23(4): 726-732. | |
23 | CHEN X, JIANG N, CHEN Z H, et al.. Response of soil phoD phosphatase gene to long-term combined applications of chemical fertilizers and organic materials [J]. Appl. Soil Ecol., 2017, 119(10):197-204. |
24 | LI M, JAIN S, DICK G J. Genomic and transcriptomic resolution of organic matter utilization among deep-sea bacteria in Guaymas basin hydrothermal plumes [J/OL]. Front. Microbiol., 2016, 7: 1125 [2022-05-10]. . |
25 | LINO T, MORI K, UCHINO Y, et al.. Ignavibacterium album gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from microbial mats at a terrestrial hot spring and proposal of Ignavibacteria classis nov., for a novel lineage at the periphery of green sulfur bacteria [J]. Int. J. Syst. Evol. Microbiol., 2010, 60(6):1376-1382. |
26 | XUN W B, HUANG T, ZHAO J, et al.. Environmental conditions rather than microbial inoculum composition determine the bacterial composition, microbial biomass and enzymatic activity of reconstructed soil microbial communities [J]. Soil Biol. Biochem., 2015, 90(11):10-18. |
[1] | 姚佳, 刘加欣, 苏焱, 苏小娟. 烟杆炭配施氮肥对玉米苗期生长及土壤特性的影响[J]. 中国农业科技导报, 2023, 25(3): 140-151. |
[2] | 郑云珠, 孙树臣. 秸秆生物炭和秸秆对麦玉轮作系统土壤养分及作物产量的影响[J]. 中国农业科技导报, 2023, 25(2): 152-162. |
[3] | 郭巨先, 欧阳碧珊, 李桂花, 符梅, 罗文龙, 骆善伟, 陆美莲. 微生物有机肥对连作菜薹生长及土壤性质的影响[J]. 中国农业科技导报, 2023, 25(2): 182-191. |
[4] | 罗鑫, 吴跃开, 张念念, 许杰, 杨再华. 油茶根际土壤真菌群落组成及多样性分析[J]. 中国农业科技导报, 2023, 25(2): 199-210. |
[5] | 杨小虎, 张曼玉, 杨海昌, 张凤华, 江宜霖, 易小兰. 基于组合模型的玛纳斯河流域农田土壤盐分反演[J]. 中国农业科技导报, 2023, 25(1): 134-141. |
[6] | 李耕, 赵园园, 程玉渊, 吴疆, 段卫东, 尹光庭, 李倩, 陈晨, 郑飞, 刘园, 史宏志. 不同有机无机氮配比对南阳烟区土壤碳氮及烤烟上部叶质量的影响[J]. 中国农业科技导报, 2023, 25(1): 175-186. |
[7] | 卢闯, 胡海棠, 覃苑, 淮贺举, 李存军. 基于无人机多光谱影像的春玉米田管理分区研究[J]. 中国农业科技导报, 2022, 24(9): 106-115. |
[8] | 柴冠群, 刘桂华, 周玮, 张秀锦, 李龙品, 范成五. 贵州乌蒙山区设施土壤重金属污染风险评估与来源解析[J]. 中国农业科技导报, 2022, 24(8): 144-153. |
[9] | 闫宁, 战宇, 苗馨月, 王二刚, 陈长宝, 李琼. 强还原土壤灭菌处理对人参连作土壤细菌群落结构及土壤酶活的影响[J]. 中国农业科技导报, 2022, 24(6): 133-144. |
[10] | 黄雅茹, 马迎宾, 李永华, 董雪, 刘源, 于猛, 韩春霞, 菅凯敏, 马海峰. 不同时间尺度胡杨液流速率与土壤因子的关系[J]. 中国农业科技导报, 2022, 24(6): 196-205. |
[11] | 赵晨光, 牛司耘, 陈勋, 方丽, 李海涛, 王佩星, 沈镔镔, 石元值. 复合肥料对茶叶产量、品质及茶园土壤肥力的影响[J]. 中国农业科技导报, 2022, 24(6): 206-217. |
[12] | 李洁, 林莹, 徐美玉, 王飞, 徐凌川. 泰山白首乌根际土壤真菌多样性分析[J]. 中国农业科技导报, 2022, 24(6): 70-81. |
[13] | 王鑫, 张玉霞, 陈卫东, 林聪颖, 候文慧, 斯日古楞, 丛百明. 追施氮肥对不同饲用燕麦品种产量及光合荧光特性的影响[J]. 中国农业科技导报, 2022, 24(5): 170-179. |
[14] | 陈奎元, 刘卉, 丁伟. 草甘膦对大豆田土壤养分及其功能酶活性的影响[J]. 中国农业科技导报, 2022, 24(5): 180-188. |
[15] | 刘辉, 江解增, 张昊, 张永仙, 钱佳宇, 李东昇, 吕艳, 吴桓锐. 浅水土表覆盖秸秆对缓解土壤盐渍化及水生蔬菜生长的影响[J]. 中国农业科技导报, 2022, 24(5): 202-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||