中国农业科技导报 ›› 2024, Vol. 26 ›› Issue (4): 164-173.DOI: 10.13304/j.nykjdb.2023.0490
• 生物制造 资源生态 • 上一篇
陈小双1(), 徐兴倩1(
), 赵熹1, 屈新2, 王海军1, 彭光灿1
收稿日期:
2023-06-25
接受日期:
2023-12-18
出版日期:
2024-04-15
发布日期:
2024-04-23
通讯作者:
徐兴倩
作者简介:
陈小双 E-mail:cxs17352480929@163.com;
基金资助:
Xiaoshuang CHEN1(), Xingqian XU1(
), Xi ZHAO1, Xin QU2, Haijun WANG1, Guangcan PENG1
Received:
2023-06-25
Accepted:
2023-12-18
Online:
2024-04-15
Published:
2024-04-23
Contact:
Xingqian XU
摘要:
为探究重金属污染物镉对红黏土电阻率特性的影响特征,制备不同含水率、干密度、镉含量的红黏土试样,采用二极法进行电阻率测试,分析不同因素与红黏土电阻率的关系,建立镉污染红黏土电阻率评价模型。结果表明,镉污染红黏土电阻率随着干密度、含水率和温度的增加均呈下降趋势,干密度小于1.30 g·cm-3范围内电阻率急剧下降,随后电阻率逐渐减小并趋于稳定;在不同镉含量条件下随着含水率增加电阻率逐渐减小,在干密度为1.20 g·cm-3时电阻率下降最显著;在干密度、含水率相同条件下,0 ℃以上温度变化对电阻率的影响不明显,镉溶液掺入量增加导致电阻率逐渐减小,当镉含量小于100 mg·kg-1时电阻率变化幅度较大。综合考虑电阻率随干密度、含水率和温度变化特征,引入体积含水量建立镉污染红黏土电阻率评价模型,拟合精度较高(R2=0.939 9),实测值与模型值较吻合,平均绝对百分比误差和均方根误差分别为4.77%、0.07。该模型可为红黏土地区重金属镉污染度的电法快速检测提供理论模型参考,为区域性红黏土耕地质量评价提供便捷分析手段。
中图分类号:
陈小双, 徐兴倩, 赵熹, 屈新, 王海军, 彭光灿. 镉污染红黏土电阻率特性及其评价模型研究[J]. 中国农业科技导报, 2024, 26(4): 164-173.
Xiaoshuang CHEN, Xingqian XU, Xi ZHAO, Xin QU, Haijun WANG, Guangcan PENG. Study on Resistivity Characteristics and Evaluation Model of Cadmium Contaminated Laterite[J]. Journal of Agricultural Science and Technology, 2024, 26(4): 164-173.
图1 不同镉含量下红黏土电阻率随干密度的变化曲线A:c=0 mg·kg-1; B:c=50 mg·kg-1; C: c=100 mg·kg-1; D: c=150 mg·kg-1; E: c=200 mg·kg-1
Fig. 1 Laterite resistivity changes with dry density under different cadmium contents
图2 不同镉含量下红黏土电阻率随含水率的变化曲线A:c=0 mg·kg-1; B:c=50 mg·kg-1; C: c=100 mg·kg-1; D: c=150 mg·kg-1; E: c=200 mg·kg-1
Fig. 2 Laterite resistivity changes with moisture content under different cadmium contents
图4 红黏土电阻率随镉含量的变化曲线A:含水率为30.6%;B:干密度为1.30 g·cm-3
Fig. 4 Laterite resistivity changes with cadmium contentsA: Water content is 30.6%; B: Dry density is 1.30 g·cm-3
序号 Number | 体积含水量 Volumetric water content/% | 镉含量 Cadmium content/(mg·kg-1) | 电阻率Resistivity | 相对误差 Relative error/% | |
---|---|---|---|---|---|
实测值 Actual measured value/(Ω·m) | 预测值 Predictive value/(Ω·m) | ||||
1 | 0.33 | 50 | 412.38 | 442.20 | 7.23 |
100 | 282.72 | 293.49 | 3.81 | ||
150 | 184.91 | 195.83 | 5.91 | ||
200 | 140.34 | 136.51 | 2.73 | ||
2 | 0.35 | 50 | 329.02 | 351.19 | 6.74 |
100 | 225.17 | 233.09 | 3.52 | ||
150 | 142.26 | 155.53 | 9.33 | ||
200 | 107.70 | 108.42 | 0.67 | ||
3 | 0.37 | 50 | 223.65 | 231.66 | 3.58 |
100 | 141.86 | 153.76 | 8.39 | ||
150 | 93.87 | 102.59 | 9.29 | ||
200 | 82.17 | 71.52 | 12.96 | ||
4 | 0.39 | 50 | 182.50 | 178.17 | 2.37 |
100 | 123.45 | 118.26 | 4.21 | ||
150 | 85.43 | 78.91 | 7.64 | ||
200 | 56.45 | 55.00 | 2.56 | ||
5 | 0.41 | 50 | 158.84 | 144.55 | 9.00 |
100 | 104.31 | 95.94 | 8.03 | ||
150 | 61.33 | 64.01 | 4.37 | ||
200 | 46.87 | 44.62 | 4.80 |
表1 不同体积含水量和镉含量下电阻率模型预测值和实测值误差分析
Table 1 Error analysis of resistivity model predicted value and measured value under different volume water content and cadmium content
序号 Number | 体积含水量 Volumetric water content/% | 镉含量 Cadmium content/(mg·kg-1) | 电阻率Resistivity | 相对误差 Relative error/% | |
---|---|---|---|---|---|
实测值 Actual measured value/(Ω·m) | 预测值 Predictive value/(Ω·m) | ||||
1 | 0.33 | 50 | 412.38 | 442.20 | 7.23 |
100 | 282.72 | 293.49 | 3.81 | ||
150 | 184.91 | 195.83 | 5.91 | ||
200 | 140.34 | 136.51 | 2.73 | ||
2 | 0.35 | 50 | 329.02 | 351.19 | 6.74 |
100 | 225.17 | 233.09 | 3.52 | ||
150 | 142.26 | 155.53 | 9.33 | ||
200 | 107.70 | 108.42 | 0.67 | ||
3 | 0.37 | 50 | 223.65 | 231.66 | 3.58 |
100 | 141.86 | 153.76 | 8.39 | ||
150 | 93.87 | 102.59 | 9.29 | ||
200 | 82.17 | 71.52 | 12.96 | ||
4 | 0.39 | 50 | 182.50 | 178.17 | 2.37 |
100 | 123.45 | 118.26 | 4.21 | ||
150 | 85.43 | 78.91 | 7.64 | ||
200 | 56.45 | 55.00 | 2.56 | ||
5 | 0.41 | 50 | 158.84 | 144.55 | 9.00 |
100 | 104.31 | 95.94 | 8.03 | ||
150 | 61.33 | 64.01 | 4.37 | ||
200 | 46.87 | 44.62 | 4.80 |
序号 Number | 体积含水量 Volumetric water content/% | 镉含量 Cadmium content/(mg·kg-1) | 电阻率Resistivity | 相对误差 Relative error/% | |
---|---|---|---|---|---|
实测值 Actual measured value/(Ω·m) | 预测值 Predictive value/(Ω·m) | ||||
6 | 0.43 | 50 | 111.78 | 113.05 | 1.13 |
100 | 71.98 | 75.03 | 4.24 | ||
150 | 47.28 | 50.06 | 5.89 | ||
200 | 32.55 | 34.90 | 7.21 | ||
7 | 0.45 | 50 | 84.08 | 89.96 | 6.99 |
100 | 60.89 | 59.70 | 1.94 | ||
150 | 39.87 | 39.84 | 0.08 | ||
200 | 25.94 | 27.77 | 7.05 | ||
8 | 0.47 | 50 | 74.81 | 75.93 | 1.51 |
100 | 48.35 | 50.40 | 4.25 | ||
150 | 36.80 | 33.63 | 8.60 | ||
200 | 16.14 | 16.99 | 5.25 |
表1 不同体积含水量和镉含量下电阻率模型预测值和实测值误差分析 (续表Continued)
Table 1 Error analysis of resistivity model predicted value and measured value under different volume water content and cadmium content
序号 Number | 体积含水量 Volumetric water content/% | 镉含量 Cadmium content/(mg·kg-1) | 电阻率Resistivity | 相对误差 Relative error/% | |
---|---|---|---|---|---|
实测值 Actual measured value/(Ω·m) | 预测值 Predictive value/(Ω·m) | ||||
6 | 0.43 | 50 | 111.78 | 113.05 | 1.13 |
100 | 71.98 | 75.03 | 4.24 | ||
150 | 47.28 | 50.06 | 5.89 | ||
200 | 32.55 | 34.90 | 7.21 | ||
7 | 0.45 | 50 | 84.08 | 89.96 | 6.99 |
100 | 60.89 | 59.70 | 1.94 | ||
150 | 39.87 | 39.84 | 0.08 | ||
200 | 25.94 | 27.77 | 7.05 | ||
8 | 0.47 | 50 | 74.81 | 75.93 | 1.51 |
100 | 48.35 | 50.40 | 4.25 | ||
150 | 36.80 | 33.63 | 8.60 | ||
200 | 16.14 | 16.99 | 5.25 |
1 | 黄英, 符必昌. 红土化学成分的变化特征[J].昆明理工大学学报(理工版),2002,27(4):63-70. |
HUANG Y, FU B C. The change properties of the chemical compositions for laterite [J]. J. Kunming Univ. Sci. Technol.(Nat. Sci.),2002,27(4):63-70. | |
2 | 环境保护部.全国土壤污染状况调查公报[EB/OL].(2014-04-07) [2023-05-26]. . |
3 | 张龙,张云霞,宋波,等. 云南兰坪铅锌矿区优势植物重金属富集特性及应用潜力[J].环境科学,2020,41(9):4210-4217. |
ZHANG L, ZHANG Y X, SONG B, et al.. Potential of accumulation and application of dominant plants in lanping leadzinc mine, Yunnan province [J]. Environ. Sci., 2020,41(9):4210-4217. | |
4 | 邹鲤岭,杨加庆,程先锋,等. 云南东川小江沿岸农田土壤和白菜重金属污染研究[J].西南农业学报,2018,31(4):754-758. |
ZOU L L, YANG J Q, CHENG X F, et al.. Investigation of farmland soil and chinese cabbage heavy metal pollution along banks of Xiaojiang in Dongchuan,Yunnan province [J]. Southwest China J. Agric. Sci., 2018,31(4):754-758. | |
5 | 王蓓,余洋,鲁冬梅,等. 云南玉溪城市河道底泥重金属污染特征与潜在生态风险评价[J].生态学杂志,2016,35(2):463-469. |
WANG B, YU Y, LU D M, et al.. Pollution characteristics and potential ecological risk of heavy metals in the sediments of urban river in Yuxi, Yunnan [J]. Chin. J. Ecol., 2016,35(2):463-469. | |
6 | 孙德安,高游,刘文捷,等. 红黏土的土水特性及其孔隙分布[J].岩土工程学报, 2015, 37(2):351-356. |
SUN D A, GAO Y, LIU W J, et al.. Soil-water characteristics and pore-size distribution of lateritic clay [J]. Chin. J. Geotech. Eng., 2015, 37(2): 351-356. | |
7 | 储亚,刘松玉,蔡国军,等. 锌污染土物理与电学特性试验研究[J].岩土力学,2015,36(10):2862-2868. |
CHU Y, LIU S Y, CAI G J, et al.. An experimental study of physical and electrical characteristics of zinc contaminated silty clay [J]. Rock Soil Mechan., 2015, 36(10): 2862-2868. | |
8 | 孙亚坤,刘玉强,能昌信,等. 污染土电阻率特性及电阻率法检测的应用研究进展[J].环境科学与技术,2011,34():165-171. |
SUN Y K, LIU Y Q, NENG C X, et al.. Development of resistivity method in the investigation of contaminated soils [J]. Environ. Sci. Technol., 2011,34(S2):165-171. | |
9 | YOON G L, OH M H, PARK J B. Laboratory study of landfill leachate effect on resistivity in unsaturated soil using cone penetrometer [J]. Environ. Geol., 2002,43(1-2):18-28. |
10 | 刘华,胡文乐,牛泽林,等. 重塑污染Q3黄土的电阻率特征演变试验研究[J].公路交通科技,2020,37(10):64-73. |
LIU H, HU W L, NIU Z L, et al.. Experimental study on evolution of resistivity characteristics of remodeled polluted Q3 loess [J]. J. Highway Transport. Res. Dev., 2020,37(10):64-73. | |
11 | 王正成,毛海涛,程龙飞,等. 非饱和紫色土的电阻率特性及参数间的相关性分析[J].农业环境科学学报,2020,39(1):152-159. |
WANG Z C, MAO H T, CHENG L F, et al.. Correlation analysis of resistivity characteristics and parameters of unsaturated purple soil [J]. J. Agro-Environ. Sci., 2020,39(1):152-159. | |
12 | 刘晓凤,申纪伟,张少华,等. 非饱和铜污染砂的交流电阻率特性[J].广西大学学报(自然科学版), 2014, 39(4):833-840. |
LIU X F, SHEN J W, ZHANG S H, et al.. AC electrical resistivity properties of unsaturated and polluted by copper [J]. J. Guangxi Univ. (Nat. Sci.), 2014,39(4):833-840. | |
13 | LIU H R, YANG H L, YI F Y. Experimental study of the complex resistivity and dielectric constant of chrome-contaminated soil [J]. J. Appl. Geophys., 2016,131:109-116. |
14 | 叶萌,李韬,许丽萍,等. 重金属污染土电阻率影响因素的试验研究[J].土木建筑与环境工程,2016,38():135-140. |
YE M, LI T, XU L P, et al.. Experimental study on influencing factors of resistivity of heavy metal contaminated soil [J]. J. Civil Architect. Environ. Eng., 2016, 38(S1):135-140. | |
15 | SON Y, OH M, LEE S. Influence of diesel fuel contamination on the electrical properties of unsaturated soil at a low frequency range of 100 Hz-10 MHz [J]. Environ. Geol., 2009,58(6):1341-1348. |
16 | 潘玉英,贾永刚,郭磊,等. LNAPL在砂质含水层中动态迁移的电阻率法监测试验研究[J].环境科学,2012,33(5): 1744-1752. |
PAN Y Y, JIA Y G, GUO L, et al.. LNAPL migration monitoring in simulated sand aquifer using resistivity method [J]. Environ. Sci., 2012,33(5):1744-1752. | |
17 | 陈琳,潘玉英,施羽昕,等. 舟山沿海土壤机油污染的电阻率变化特征及物理影响因素研究[J].土壤通报,2017,48(5):1240-1246. |
CHEN L, PAN Y Y, SHI Y X, et al.. Resistivity variation characteristics and physical influencing factors of machine oil contaminated soil in coastal area of Zhoushan [J]. Chin. J. Soil Sci., 2017,48(5):1240-1246. | |
18 | 储亚,刘松玉,蔡国军,等. 重金属污染黏性土电阻率影响因素分析及其预测模型[J].东南大学学报(自然科学版),2016,46(4):866-871. |
CHU Y, LIU S Y, CAI G J, et al.. Impact factor analysis of resistivity of heavy metal polluted cohesive soil and its prediction model [J]. J. Southeast Univ. ( Nat. Sci.), 2016,46(4):866-871. | |
19 | 田高源,陈瑞锋,刘晓凤,等. 硫酸对赤泥改良黄土剪切特性的影响[J].广西大学学报(自然科学版),2017,42(4):1378-1383. |
TIAN G Y, CHEN R F, LIU X F, et al.. Effect of sulfuric acid on shear properties of loess improved by red mud [J]. J. Guangxi Univ. (Nat. Sci.), 2017,42(4):1378-1383. | |
20 | ZHA F S, ZHU F H, XU L, et al.. Laboratory study of strength, leaching, and electrical resistivity characteristics of heavy-metal contaminated soil [J/OL]. Environ. Earth Sci.,2021,80(5):184 [2023-05-26]. . |
21 | ARCHIE G E. The electric resistivity log as aid in determining some reservoir characteristics [J]. Trans. AIME,1942,146:54-61. |
22 | DELANEY A J, PEAPPLES P R, ARCONE S A. Electrical resistivity of frozen and petroleum-contaminated fine-grained soil [J]. Cold Regions Sci. Technol., 2001,32(2-3):107-119. |
23 | 韩立华,刘松玉,杜延军. 一种检测污染土的新方法——电阻率法[J].岩土工程学报,2006,28(8):1028-1032. |
HAN L H, LIU S Y, DU Y J. New method for testing contaminated soil—electrical resistivity method [J]. Chin. J. Geotechnical Eng., 2006,28(8):1028-1032. | |
24 | 潘玉英, 童奕涵,朱根民, 等. 非均质含水土层中石油运移的电阻率监测[J].中国环境科学,2020,40(2):771-779. |
PAN Y Y, TONG Y H, ZHU G M, et al.. Resistivity monitoring of petroleum transport in non-homogeneous aquifer [J]. China Environ. Sci., 2020, 40(2): 771-779. | |
25 | PIERWOŁA J, SZUSZKIEWICZ M, CABALA J, et al.. Integrated geophysical and geochemical methods applied for recognition of acid waste drainage (AWD) from Zn-Pb post-flotation tailing pile (Olkusz, southern Poland) [J]. Environ. Sci. Pollut. Res., 2020,27(14):16731-16744. |
26 | 刘华,胡文乐,王铁行,等. 含水率及压实度对酸碱污染重塑黄土的电阻率特征影响试验研究[J].西安建筑科技大学学报(自然科学版),2021,53(3):337-343. |
LIU H, HU W L, WANG T H, et al.. Experimental research on the resistivity characteristics of contaminated remolded Q3 loess by water content and compaction degree [J]. J. Xi'an Univ. Architect. Technol. (Nat. Sci.), 2021,53(3):337-343. | |
27 | 中华人民共和国水利部. 土工试验方法标准: [S]. 北京:中国计划出版社,2019. |
28 | 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2007: 22-23. |
29 | 申纪伟,毛海涛,王正成,等. 三峡库区锌污染紫色土交流电阻率特性研究[J].环境科学与技术,2019,42(2):134-138. |
SHEN J W, MAO H T, WANG Z C, et al.. Study on AC resistivity characteristics of Zinc contaminated purple soil in the Three Gorges reservoir area [J]. Environ. Sci. Technol., 2019,42(2):134-138. | |
30 | 张亚彬,左双英,李雨霏,等. 红黏土失水收缩孔隙演化及微观机理分析[J].地下空间与工程学报,2022,18(6):1882-1890. |
ZHANG Y B, ZUO S Y, LI Y F, et al.. Analysis on pore evolution and microscopic mechanism of red clay during loss water and shrinkage [J]. Chin. J. Underground Space Eng., 2022,18(6):1882-1890. | |
31 | 范本贤,黄英,孙书君,等. 云南红土的循环胀缩特性研究[J].水土保持学报,2018,32(2):120-127. |
FAN B X, HUANG Y, SUN S J, et al.. Study on cyclic swell-shrink characteristics of Yunnan laterite [J]. J. Soil Water Conserv., 2018,32(2):120-127. | |
32 | 韩立华,刘松玉,杜延军. 温度对污染土电阻率影响的试验研究[J].岩土力学, 2007,28(6): 1151-1155. |
HAN L H, LIU S Y, DU Y J. Experiment study on effect of temperature on electrical resistivity of contaminated soils [J]. Rock Soil Mechan., 2007,28(6):1151-1155. | |
33 | 查甫生,刘松玉,杜延军.电阻率法在地基处理工程中的应用探讨[J].工程地质学报,2006,14(5):637-643. |
ZHA F S, LIU S Y, DU Y J. Current status on use of electrical resistivity method for ground improvement [J]. J. Eng. Geology, 2006,14(5):637-643. | |
34 | 李学垣.土壤化学[M]. 北京: 高等教育出版社,2001:167-169. |
35 | 杨晓静,徐宗学,左德鹏,等. 云南省1958—2013年极端气温时空变化特征分析[J].长江流域资源与环境,2016,25(3):523-536. |
YANG X J, XU Z X, ZUO D P, et al.. Spatiotemporal variation characteristics of extreme temperature in Yunnan province from 1958 to 2013 [J]. Resour. Environ. Yangtze Basin, 2016,25(3):523-536. | |
36 | 谭罗荣,孔令伟. 某类红粘土的基本特性与微观结构模型[J].岩土工程学报,2001,23(4):458-462. |
TAN L R, KONG L W. Fundamental property and microstructure model of red clay [J]. Chin. J. Geotech. Eng., 2001,23(4):458-462. | |
37 | 杨德欢,颜荣涛,韦昌富,等. 粉质黏土强度指标的水化学敏感性研究[J].岩土力学,2016,37(12):3529-3536. |
YANG D H, YAN R T, WEI C F, et al.. A study of water chemical sensitivity of strength indices of silty clay [J]. Rock Soil Mechan., 2016,37(12):3529-3536. | |
38 | 曾召田,潘斌,吴昱东,等. 土中结合水对红黏土抗剪强度特性的影响机制[J].地下空间与工程学报,2022,18(5):1565-1572, 1579. |
ZENG Z T, PAN B, WU Y D, et al.. Influence mechanism of bound water on shear strength characteristics of lateritic clay [J]. Chin. J. Underground Space Eng., 2022,18(5):1565-1572, 1579. | |
39 | 刘金都,冯晨,李江山,等. 砷、镉复合重金属污染土土-水特性及微观机制研究[J]. 岩土力学,2022,43(10):2841-2851. |
LIU J D, FENG C, LI J S, et al.. Research on soil-water characteristic curve and microscopic mechanism of arsenic and cad-mium composite heavy metal contaminated soil [J]. Rock Soil Mechan., 2022,43(10):2841-2851. | |
40 | YIN C, MAHMUD H B, SHAABAN M G. Stabilization/solidification of lead-contaminated soil using cement and rice husk ash [J]. J. Hazardous Materials, 2006,137(3):1758-1764. |
41 | 彭慈德,常留成. 不同温度下红黏土胀缩性试验研究[J].长江科学院院报,2019,36(7):100-105. |
PENG C D, CHANG L C. Experimental study on the expansion and shrinkage of red clay at different temperatures [J]. J. Yangtze River Sci. Res. Institute,2019,36(7):100-105. | |
42 | 万佳磊,冯亚松,李双杰,等. 干湿循环对新型钢渣基固化剂处理镍锌复合污染黏土的浸出和物理力学特性影响研究[J].岩土工程学报,2021,43():213-216. |
WAN J L, FENG Y S, LI S J, et al.. Leaching, physical and mechanical characteristics of nickel-zinc-contaminated clay solidified/stabilized by a novel steel slag-based binder subjected to wetting-drying cycles [J]. Chin. J. Geotech. Eng., 2021,43(S2):213-216. | |
43 | 杨忠平,李登华,邓仁峰,等. 冻融循环对固化铅污染土强度与孔隙特征影响的试验研究[J].工程地质学报,2019,27(3):539-549. |
YANG Z P, LI D H, DENG R F, et al.. An experimental study for influence of freeze-thaw cycles on strength and pore characteristics of solidified leadcontaminated soil [J]. J. Eng. Geology, 2019,27(3):539-549. |
[1] | 王薇, 付虹雨, 卢建宁, 岳云开, 杨瑞芳, 崔国贤, 佘玮. 基于无人机航拍的苎麻倒伏信息解译研究[J]. 中国农业科技导报, 2024, 26(3): 91-97. |
[2] | 丛文成, 袁立敏, 蒙仲举, 杨宇. 玉米芯颗粒对风沙土毛管水运移和蒸发特性的影响[J]. 中国农业科技导报, 2024, 26(2): 198-207. |
[3] | 肖瑶, 吴明亮. 计算流体力学在农业工程中的应用现状与发展趋势[J]. 中国农业科技导报, 2023, 25(8): 1-9. |
[4] | 边凤霞, 刘凯歌, 容新民. 基于机器学习构建葡萄霜霉病预测模型及验证[J]. 中国农业科技导报, 2023, 25(8): 126-137. |
[5] | 郁壮, 冯仲科, 张标, 马天天. 无损方法实现重庆地区马尾松材积模型研建[J]. 中国农业科技导报, 2023, 25(7): 97-104. |
[6] | 柯昊纯, 李琨, 程瑞锋. 营养液紫外LED杀菌模组仿真与响应面法优化[J]. 中国农业科技导报, 2023, 25(4): 132-146. |
[7] | 于淼, 周海宾, 丁京涛, 程红胜, 沈玉君, 范盛远, 张曦, 王健, 徐鹏翔, 程琼仪. 基于EDEM的餐厨垃圾组成颗粒间接触参数标定[J]. 中国农业科技导报, 2023, 25(12): 111-120. |
[8] | 汪顺生, 姚英全, 黄一丹, 杨成宇, 杨金月, 张昊. 宽垄沟灌下冬小麦灌水施肥质量评价[J]. 中国农业科技导报, 2023, 25(12): 145-157. |
[9] | 周峻宇, 谷雨, 唐珍琦, 吴海勇, 刘琼峰, 李明德. 复合螯合剂对籽粒苋修复镉污染农田的影响[J]. 中国农业科技导报, 2023, 25(12): 186-194. |
[10] | 单发科, 康朔, 朱建锡, 王永维, 王俊. 基于EDEM的粉垄和旋耕作业混肥效果研究[J]. 中国农业科技导报, 2023, 25(11): 90-102. |
[11] | 赵薇, 何静. 全球气候变化下我国远洋渔业产业风险评估研究[J]. 中国农业科技导报, 2023, 25(10): 12-21. |
[12] | 杨小虎, 张曼玉, 杨海昌, 张凤华, 江宜霖, 易小兰. 基于组合模型的玛纳斯河流域农田土壤盐分反演[J]. 中国农业科技导报, 2023, 25(1): 134-141. |
[13] | 郑龙. 小白菜镉含量基因型与环境效应研究[J]. 中国农业科技导报, 2022, 24(9): 58-65. |
[14] | 翟利敏, 李文通, 冯政, 李华, 裴杨莉. 基因编辑猪的研究现状[J]. 中国农业科技导报, 2022, 24(8): 25-34. |
[15] | 麻吉亮, 张蕙杰, 李宁辉, 岳慧丽. 不同经营规模下绿豆产业生产技术效率分析——以吉林省白城市绿豆生产为例[J]. 中国农业科技导报, 2022, 24(8): 9-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||