Journal of Agricultural Science and Technology ›› 2022, Vol. 24 ›› Issue (9): 39-49.DOI: 10.13304/j.nykjdb.2021.0155
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Hongtao XIANG1(), Wan LI2, Ning HE2, Qiang WANG3, Lingling ZENG4, Manli WANG2, Chunjie YANG2, Yanjiang FENG2
Received:
2021-02-22
Accepted:
2021-05-29
Online:
2022-09-15
Published:
2022-10-11
项洪涛1(), 李琬2, 何宁2, 王强3, 曾玲玲4, 王曼力2, 杨纯杰2, 冯延江2
作者简介:
项洪涛 E-mail:xianght@163.com
基金资助:
CLC Number:
Hongtao XIANG, Wan LI, Ning HE, Qiang WANG, Lingling ZENG, Manli WANG, Chunjie YANG, Yanjiang FENG. Physiological Response and Effect of S3307 on Water Stress of Adzuki Bean Root[J]. Journal of Agricultural Science and Technology, 2022, 24(9): 39-49.
项洪涛, 李琬, 何宁, 王强, 曾玲玲, 王曼力, 杨纯杰, 冯延江. 小豆根系对水分胁迫的生理响应及S3307的缓解效应[J]. 中国农业科技导报, 2022, 24(9): 39-49.
处理Treatment | 药剂 Pesticide | 水分 Water |
---|---|---|
T1 | 蒸馏水 Distilled water | 正常土壤水分 Suitable soil moisture |
T2 | S3307 | 正常土壤水分 Suitable soil moisture |
T3 | 蒸馏水Distilled water | 淹水胁迫 Flooding stress |
T4 | S3307 | 淹水胁迫 Flooding stress |
Table 1 Experiment design
处理Treatment | 药剂 Pesticide | 水分 Water |
---|---|---|
T1 | 蒸馏水 Distilled water | 正常土壤水分 Suitable soil moisture |
T2 | S3307 | 正常土壤水分 Suitable soil moisture |
T3 | 蒸馏水Distilled water | 淹水胁迫 Flooding stress |
T4 | S3307 | 淹水胁迫 Flooding stress |
Fig. 1 H2O2 contents in root of adzuki bean seedlings under different treatmentsNote: Different lowercase letters indicate significant differences between different treatments of same variety at P<0.05 level.
Fig. 2 MDA contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
Fig. 3 SOD activities in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
Fig. 4 POD activities in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
Fig. 5 CAT activities in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
品种 Variety | 处理 Treatment | SOD/CAT ratio | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 12.12±4.09 a | 12.57±2.74 a | 13.50±2.55 a | 12.67±2.61 a | 11.91±1.48 ab |
T2 | 10.62±1.83 ab | 13.07±1.23 a | 12.26±3.55 a | 11.39±1.98 a | 11.17±2.37 ab | |
T3 | 9.04±0.25 ab | 8.06±0.46 ab | 7.09±0.36 a | 11.10±1.64 a | 16.09±2.25 a | |
T4 | 7.58±0.25 b | 6.88±0.36 b | 6.18±0.23 a | 6.76±0.40 a | 9.59±0.81 b | |
天津红 Tianjinhong | T1 | 14.96±3.09 a | 13.14±1.04 a | 14.87±2.85 a | 12.71±1.00 a | 11.41±1.00 a |
T2 | 11.05±2.66 a | 14.83±1.44 a | 14.38±3.08 a | 11.80±0.78 a | 9.83±0.67 a | |
T3 | 8.70±0.54 a | 7.48±0.29 b | 6.78±0.20 b | 9.34±0.47 a | 9.51±0.48 a | |
T4 | 8.02±0.41 a | 7.72±0.59 b | 6.86±0.66 b | 10.04±0.97 a | 8.93±0.63 a |
Table 2 SOD/CAT ratio in root of seedlings of adzuki bean under different treatments
品种 Variety | 处理 Treatment | SOD/CAT ratio | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 12.12±4.09 a | 12.57±2.74 a | 13.50±2.55 a | 12.67±2.61 a | 11.91±1.48 ab |
T2 | 10.62±1.83 ab | 13.07±1.23 a | 12.26±3.55 a | 11.39±1.98 a | 11.17±2.37 ab | |
T3 | 9.04±0.25 ab | 8.06±0.46 ab | 7.09±0.36 a | 11.10±1.64 a | 16.09±2.25 a | |
T4 | 7.58±0.25 b | 6.88±0.36 b | 6.18±0.23 a | 6.76±0.40 a | 9.59±0.81 b | |
天津红 Tianjinhong | T1 | 14.96±3.09 a | 13.14±1.04 a | 14.87±2.85 a | 12.71±1.00 a | 11.41±1.00 a |
T2 | 11.05±2.66 a | 14.83±1.44 a | 14.38±3.08 a | 11.80±0.78 a | 9.83±0.67 a | |
T3 | 8.70±0.54 a | 7.48±0.29 b | 6.78±0.20 b | 9.34±0.47 a | 9.51±0.48 a | |
T4 | 8.02±0.41 a | 7.72±0.59 b | 6.86±0.66 b | 10.04±0.97 a | 8.93±0.63 a |
Fig. 6 Proline contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
Fig. 7 Soluble sugar contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
Fig. 8 Soluble protein contents in root of adzuki bean seedlings under different treatmentsNote: Different small letters indicate significant difference between different treatments of same variety at P<0.05 level.
品种 Variety | 处理 Treatment | 单盆产量 Yield per pot/g | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 30.37±0.22 a | 30.37±0.22 a | 30.37±0.22 ab | 30.37±0.22 a | 30.37±0.22 a |
T2 | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | |
T3 | 30.12±0.39 a | 29.85±0.39 a | 28.92±0.24 c | 28.07±0.25 b | 27.82±0.86 b | |
T4 | 30.27±0.16 a | 29.97±0.32 a | 29.73±0.17 b | 28.87±0.13 a | 28.32±0.25 b | |
天津红 Tianjinhong | T1 | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b |
T2 | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | |
T3 | 22.57±1.07 b | 22.70±0.50 b | 22.30±0.20 c | 21.73±0.22 c | 21.28±0.15 d | |
T4 | 23.45±0.33 ab | 23.10±0.33 b | 22.92±0.13 bc | 22.88±0.12 b | 22.40±0.16 c |
Table 3 Yield per pot of adzuki bean under different treatments
品种 Variety | 处理 Treatment | 单盆产量 Yield per pot/g | ||||
---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | ||
龙小豆4号 Longxiaodou 4 | T1 | 30.37±0.22 a | 30.37±0.22 a | 30.37±0.22 ab | 30.37±0.22 a | 30.37±0.22 a |
T2 | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | 30.72±0.23 a | |
T3 | 30.12±0.39 a | 29.85±0.39 a | 28.92±0.24 c | 28.07±0.25 b | 27.82±0.86 b | |
T4 | 30.27±0.16 a | 29.97±0.32 a | 29.73±0.17 b | 28.87±0.13 a | 28.32±0.25 b | |
天津红 Tianjinhong | T1 | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b | 23.62±0.39 b |
T2 | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | 24.85±0.16 a | |
T3 | 22.57±1.07 b | 22.70±0.50 b | 22.30±0.20 c | 21.73±0.22 c | 21.28±0.15 d | |
T4 | 23.45±0.33 ab | 23.10±0.33 b | 22.92±0.13 bc | 22.88±0.12 b | 22.40±0.16 c |
1 | 刘晓慧,伍海兵,张圣美,等.淹水胁迫对丝瓜幼苗生长及呼吸酶活性的影响[J].江西农业学报,2020,32(3):48-54. |
LIU X H, WU H B, ZHANG S M, et al.. Effects of waterlogging stress on growth and respiratory enzyme activities of Luffa seedings [J]. Acta Agric. Jiangxi, 2020, 32(3):48-54. | |
2 | 王诗雅,郑殿峰,项洪涛,等.初花期淹水胁迫对大豆叶片AsA-GSH循环的损伤及烯效唑的缓解效应[J].中国农业科学,2021,54(2):271-285. |
WANG S Y, ZHENG D F, XIANG H T, et al.. Damage of AsA-GSH cycle of soybean leaves under waterlogging stress at initial stage and the mitigation effect of uniconazole [J]. Sci. Agric. Sin., 2021, 54(2):271-285. | |
3 | 项洪涛,李琬,郑殿峰,等.外源ABA对低温胁迫下小豆幼苗生理和产量的影响[J].干旱地区农业研究,2020,38(6):52-60. |
XIANG H T, LI W, ZHENG D F, et al.. Effects of exogenous ABA on cold resistance physiology and yield of adzuki bean seedlings under low temperature stress [J]. Agric. Res. Arid Areas, 2020, 38(6):52-60. | |
4 | 项洪涛,李琬,郑殿峰,等.幼苗期淹水胁迫及喷施烯效唑对小豆生理和产量的影响[J].作物学报,2021,47(3):494-506. |
XIANG H T, LI W, ZHENG D F, et al.. Effects of uniconazole and waterlogging stress in seedling stage on the physiology and yield in adzuki bean [J]. Acta Agric. Sin., 2021, 47(3):494-506. | |
5 | 李建平,陈振国,谭本奎,等.水涝胁迫对烤烟理化特性及产质量的影响[J].安徽农业科学,2020,48(23):68-71. |
LI J P, CHEN Z G, TAN B K, et al.. Effects of waterlogging stress on physicochemical properties, yield and quality of flue-cured tobacco [J]. J. Anhui Agric. Sci., 2020, 48(23):68-71. | |
6 | 吴麟,张伟伟,葛晓敏,等.植物对淹水胁迫的响应机制研究进展[J].世界林业研究,2012,25(6):27-33. |
WU L, ZHANG W W, GE X M, et al.. A review of the response mechanisms of plants to waterlogging stress [J]. World For. Res., 2012, 25(6):27-33. | |
7 | 余卫东,冯利平,胡程达,等.苗期涝渍对黄淮地区夏玉米生长和产量的影响[J].生态学杂志,2015,34:2161-2166. |
YU W D, FENG L P, HU C D, et al.. Effects of waterlogging during seedling stage on the growth and yield of summer maize in Huang-Huai region [J]. Chin. J. Ecol., 2015, 34:2161-2166. | |
8 | 于奇,冯乃杰,王诗雅,等.S3307对始花期和始粒期淹水绿豆光合作用及产量的影响[J].作物学报,2019,45:1080-1089. |
YU Q, FENG N J, WANG S Y, et al.. Effects of S3307 on the photosynthesis and yield of mung bean at R1 and R5 stages under waterlogging stress [J]. Acta Agric. Sin., 2019, 45:1080-1089. | |
9 | 张洪鹏,张盼盼,李冰,等.烯效唑对淹水胁迫下大豆叶片光合特性及产量的影响[J].中国油料作物学报,2016,38:611-618. |
ZHANG H P, ZHANG P P, LI B, et al.. Effects of uniconazole on leaf photosynthetic characteristics and yield of soybean under waterlogging stress [J]. Chin. J. Oil Crop Sci., 2016, 38:611-618. | |
10 | 张锦强,张坤,豆鑫,等.烯效唑对'夏黑'葡萄生理特性及品质的影响[J].西北林学院学报,2020,35(6):135-141. |
ZHANG J Q, ZHANG K, DOU X, et al.. Effets of application of uniconazole on physiological characteristics and quality of 'Summer Black'grape [J]. J. Northwest For. Univ., 2020, 35(6):135-141. | |
11 | 李琬,项洪涛,何宁,等.烯效唑(S3307)提高作物抗逆性研究进展[J].中国农学通报,2020,36(20):101-106. |
LI W, XIANG H T, HE N, et al.. Uniconazole (S3307) improving resistance of crop: A review [J].Chin. Agric. Sci. Bull., 2020, 36(20):101-106. | |
12 | 项洪涛,李琬,何宁,等.苗期胁迫下烯效唑对红小豆根系抗寒生理及产量的影响[J].草业学报,2019,28(7):92-102. |
XIANG H T, LI W, HE N, et al.. Effects of S3307 on physiology of chilling resistance in root and yield of adzuki bean under low temperature stress during seeding stage [J]. Acta Pratac. Sin., 2019, 28(7):92-102. | |
13 | JULIA B S, RUTH C. Sensing and signalling in response to oxygen deprivation in plants and other organisms [J]. Annals Bot., 2005, 96:507-518. |
14 | REN B Z, ZHANG J W, DONG S, et al.. Effects of duration of waterlogging at different growth stages on grain growth of summer maize (Zea mays L.) under field conditions [J]. J. Agron. Crop Sci., 2016, 202:564-575. |
15 | 李合生,孙群,赵世杰.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000: 1-278. |
LIH S, SUN Q, ZHAO S J. Principles and Techniques of Plant Physiological Biochemical Experimental [M]. Beijing: Higher Education Press, 2000: 1-278. | |
16 | 张宪政.作物生理研究法[M].北京:农业出版社,1992: 1-220. |
ZHANG X Z. Crop Physiology Research Method [M]. Beijing: Chinese Agriculture Press, 1992: 1-220. | |
17 | 王诗雅,冯乃杰,项洪涛,等.水分胁迫对大豆生长与产量的影响及应对措施[J].中国农学通报,2020,36(27):41-45. |
WANG S Y, FENG N J, XIANG H T, et al.. Water stress: Effects on growth and yield of soybean and the countermeasures [J]. Chin. Agric. Sci. Bull., 2020, 36(27):41-45. | |
18 | 李颖,赵继浩,李金融,等.外源6-BA对不同生育时期淹水花生根系生长和荚果产量的影响[J].中国农业科学,2020,53(18):3665-3678. |
LI Y, ZHAO J H, LI J R, et al.. Effects of exogenous 6-BA on root growth and pod yield of flooded peanut at different growth stages [J]. Sci. Agric. Sin., 2020, 53(18):3665-3678. | |
19 | ARNCZARSKA M, BEDNARSKI W. Effect of a short-term hypoxic treatment followed by re-aeration on free radicals level and antioxidative enzymes in lupine roots [J]. Plant Physiol. Biochem., 2004, 42(3):233-240. |
20 | ZHOU Z G, OOSTERHUIS Derrick M. Physiological mechanism of nitrogen mediating cotton (Gossypium hirsutum L.) seedlings growth under water-stress conditions [J]. Am. J. Plant Sci., 2012, 3(6):721-730. |
21 | 齐玉军,方传文,徐泽俊,等.外源二乙基二硫代氨基甲酸钠对花期淹水大豆根系抗氧化系统的影响[J].中国油料作物学报,2019,41(4):577-587. |
QI Y J, FANG C W, XU Z J, et al.. Effect of exogenous sodium diethyldithiocarbamate on antioxidation system in soybean root on waterlogging at flowering stage [J].Chin. J. Oil Crop Sci., 2019, 41(4):577-587. | |
22 | 张洪鹏,张盼盼,李冰,等.烯效唑对淹水胁迫下大豆农艺形状及生理生化指标的影响[J].中国油料作物学报,2017,39(5):655-663. |
ZHANG H P, ZHANG P P, LI B, et al.. Effects of uniconazole on alleviation of waterlogging stress in soybean [J]. Chin. J. Oil Crop Sci., 2017, 39(5):655-663. | |
23 | AHMED S, NAWATA E, HOSOKAWA M, et al.. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging [J]. Plant Sci., 2002, 163(1):117-123. |
24 | 周青云,李梦初,漆栋良,等.拔节期淹水条件下施氮量对春玉米生理特性的影响[J].灌溉排水学报,2020,39():40-44. |
ZHOU Q Y, LI M C, QI D L, et al.. Effects of nitrogen rate on physiological characteristics of spring maize under waterlogging at jointing stage [J]. J. Irrigat. Drain., 2020, 39(Supp.2):40-44. | |
25 | 李文静,朱进,彭玉全,等.烯效唑对淹水胁迫对油麦菜生长、生理和解剖结构的影响[J].植物生理学报,2020,56(10):2233-2240. |
LI W J, ZHU J, PENG Y Q, et al.. Effects of waterlogging stress on growth, physiology and anatomical structure of Latuca sativa seedlings [J]. Plant Physiol. J., 2020, 56(10):2233-2240. | |
26 | 杨文钰,徐精文,张鸿.烯效唑对秧苗抗寒性的影响及其作用机理研究[J].杂交水稻,2003,18(2):53-57. |
YANG W Y, XU J W, ZHANG H. Studies on action mechanism and effect of uniconzole (S-3307) on cold resistance of rice seedlings [J]. Hybrid Rice, 2003, 18(2):53-57. | |
27 | KANAZAWA S, SANO S, KOSHIBA T, et al.. Changes in antioxidative enzymes in cucumber cotyledons during natural senescence: comparison with those during dark-induced senescence [J]. Physiol. Plant, 2010, 109:211-216. |
28 | 张嘉雯,卢绍浩,赵喆,等.外源褪黑素对低温胁迫下烟草幼苗生理指标的影响[J].中国农业科技导报,2020,22(9):78-86. |
ZHANG J W, LU S H, ZHAO Z, et al.. Influences of exogenous melatonin on physiological properties of tobacco seedlings under low temperature stress [J]. J. Agric. Sci. Technol., 2020, 22(9):78-86. | |
29 | 尉欣荣,张智伟,周雨,等.褪黑素对低温和干旱胁迫下多年生黑麦草幼苗生长和抗氧化系统的调节作用[J].草地学报,2020,28(5):1337-1345. |
YU X R, ZHANG Z W, ZHOU Y, et al.. Effects of melatonin on growth and antioxidant system of perennial ryegrass seedlings under cold and drought stress [J]. Acta Agric. Sin., 2020, 28(5):1337-1345. | |
30 | 罗洁,袁龙义.淹水胁迫对观赏向日葵幼苗生长及生理指标的影响[J].湖北农业科学,2020,59(9):86-90. |
LUO J, YUAN Y L. Effects of waterlogging stress on growth and physiology characters of ornamental sunflower seedlings [J]. Hubei Agric. Sci., 2020, 59(9):86-90. | |
31 | 古丽江·许库尔汗,孙雅丽,阿依古丽·铁木儿,等.低温胁迫对红加仑枝条渗透物质含量、膜质过氧化及保护酶活性的影响[J].新疆农业科学,2019,56(4):685-695. |
GULIJIANG X, SUN Y L, AYIGULI T, et al.. Effects of low temperature stress on the content of penetration substance, membrane peroxidation and protective enzyme activity in Ribes rubrum [J]. Xinjiang Agric. Sci., 2019, 56(4):685-695. |
[1] | Kaihong XIANG, Xu LYU, Chuanhai SHU, Riqu WUZA, Jinyue ZHANG, Yuemei ZHU, Zhiyuan YANG, Yongjian SUN, Jun MA. Effects of Combined Application of Organic and Inorganic Fertilizers on Yield and Nitrogen Use Efficiency of Precision Hill-direct-seeding Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(9): 149-165. |
[2] | Yuanwei CHEN, Huabin ZHENG, Weiqin WANG, Na KUANG, Youyi LUO, Dan ZOU, Qiyuan TANG. Effect of Mowing Treatment on the Main Season Whole Plant Biomass and Silage Quality and Yield in Regeneration Season of Ratooning Rice [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 161-171. |
[3] | Quanquan WEI, Ying GAO, Jiulan GOU, Meng ZHANG, Yong RAO, Bin YANG, Di FAN, Wenhao FENG, Huagui XIAO. Effects of Different Sowing Rates and Sowing Methods on the Nutrient Absorption, Utilization and Yield of Winter Rapeseed in Yellow Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(8): 182-191. |
[4] | Xuejing LIU, Xiaoyuan BAO, Xiaoyang HOU, Wenchao ZHEN. Dynamics of Soil Water Content and Yield Formation Characteristics of Winter Wheat Under Water Limited Irrigation in Spring in Haihe Plain [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 167-176. |
[5] | Zengying PENG, Yingying SHEN, Songjiang DUAN, Yifan WU, Zongrun LI, Rensong GUO, Jusong ZHANG. Effect of Chemical Regulation on Canopy Structure and Yield of Cotton with Different Nitrogen Amounts [J]. Journal of Agricultural Science and Technology, 2022, 24(7): 177-186. |
[6] | Yi DANG, Jianjun ZHANG, Gang ZHAO, Tinglu FAN, Lei WANG, Shangzhong LI, Gang ZHOU. Effects of Mixed Applying of Controlled-release Urea and Conventional Urea on Yield,Water and Nitrogen Utilization of Maize in Dryland [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 156-165. |
[7] | Tongmei GAO, Feng LI, Xiaoyu SU, Dongyong WANG, Yuan TIAN, Pengyu ZHANG, Tongke LI, Zihao YANG, Shuangling WEI. Effect of Nitrogen Reduction on Agronomic Trait, Photosynthetic Characteristics and Yield of Sesame [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 176-188. |
[8] | Chenguang ZHAO, Siyun NIU, Xun CHEN, Li FANG, Haitao LI, Peixing WANG, Binbin SHEN, Yuanzhi SHI. Effects of Compound Fertilizer on Tea Yield, Quality and Fertility of Tea Garden Soil [J]. Journal of Agricultural Science and Technology, 2022, 24(6): 206-217. |
[9] | Yu FENG, Shujin QIU, Xiangyang YUAN, Qingliang CUI, Zhiqiang JI. Research on Compression Mechanical Characteristics of Sorghum Grains [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 102-110. |
[10] | Hongyan ZHAO, Junwei TAN, Jie ZHANG, Haonan CHEN, Chunxu WANG, Di ZHAO, Haipeng LI, Lixia ZHU, Yiqiang HAN. Community Structure of Stem-based Fungi Infected with Adzuki Bean and Mung Bean [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 129-136. |
[11] | Xin WANG, Yuxia ZHANG, Weidong CHEN, Congying LIN, Wenhui HOU, Guleng SIRI, Baiming CONG. Effects of Nitrogen Topdressing on Yield and Photosynthetic Fluorescence Characteristics of Different Forage Oat Varieties [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 170-179. |
[12] | Hui LIU, Jiezeng JIANG, Hao ZHANG, Yongxian ZHANG, Jiayu QIAN, Dongsheng LI, Yan LYU, Huanrui WU. Effects of Straw Mulching on Shallow Water Soil on Alleviating Soil Salinization and Growth of Aquatic Vegetables [J]. Journal of Agricultural Science and Technology, 2022, 24(5): 202-208. |
[13] | Yuan YI, Huiyun ZHANG, Liwei LIU, Jing WANG, Xuecheng ZHU, Na ZHAO, Guohua FENG. Effects of Slow-released Fertilizer Compound Humic Acid Instead of Urea on Grain Yield and Population Quality in Xumai New Varieties [J]. Journal of Agricultural Science and Technology, 2022, 24(4): 144-153. |
[14] | Tianming QI, Zhijian LI, Peiyou QIN, Guixing REN, Bangwei ZHOU. Research and Application Prospect of Quinoa Cultivation Technology [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 157-165. |
[15] | Linlin DONG, Jinfang ZHA, Mingxing SHEN, Haihou WANG, Linlin SHI, Yueyue TAO, Xinwei ZHOU, Changying LU. Effect of Long-term Straw Returning on Soil Organic Carbon Fractions Composition in Rice-Wheat Rotation Ecosystem [J]. Journal of Agricultural Science and Technology, 2022, 24(3): 166-175. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||