Journal of Agricultural Science and Technology ›› 2023, Vol. 25 ›› Issue (9): 13-22.DOI: 10.13304/j.nykjdb.2022.0257
• AGRICULTURAL INNOVATION FORUM • Previous Articles Next Articles
Ning ZHAO1(), Xing LI1, Yong JIANG1, Zhixiu WANG1, Yulin BI1, Guohong CHEN1,2, Hao BAI2(), Guobin CHANG1,2()
Received:
2022-04-02
Accepted:
2022-12-29
Online:
2023-09-15
Published:
2023-09-28
Contact:
Hao BAI,Guobin CHANG
赵宁1(), 李星1, 江勇1, 王志秀1, 毕瑜林1, 陈国宏1,2, 白皓2(), 常国斌1,2()
通讯作者:
白皓,常国斌
作者简介:
赵宁 E-mail: zhaon1123@qq.com
基金资助:
CLC Number:
Ning ZHAO, Xing LI, Yong JIANG, Zhixiu WANG, Yulin BI, Guohong CHEN, Hao BAI, Guobin CHANG. Application of Image Recognition Technology in the Field of Chicken Breeding[J]. Journal of Agricultural Science and Technology, 2023, 25(9): 13-22.
赵宁, 李星, 江勇, 王志秀, 毕瑜林, 陈国宏, 白皓, 常国斌. 图像识别技术在鸡养殖领域的应用[J]. 中国农业科技导报, 2023, 25(9): 13-22.
1 | 黄清虎.现代畜牧业发展存在的问题及对策[J].今日畜牧兽医,2021,37(10):70. |
2 | SPEEDY A W. Global production and consumption of animal source foods [J]. J. Nutr., 2003, 133( 2): 4048-4053. |
3 | 邹剑敏.家禽健康养殖的影响因素及其研究动态[J].中国家禽,2013,35(6):2-7. |
4 | 李沛.红外热成像下家禽体温监测、预测方法与装置研究[D].太原:中北大学,2022. |
LI P. Research on methods and devices for monitoring and predicting poultry body temperature under infrared thermal imaging [D]. Taiyuan: North University of China, 2022. | |
5 | 陆明洲,沈明霞,丁永前,等.畜牧信息智能监测研究进展[J].中国农业科学,2012,45(14):2939-2947. |
LU M Z, SHEN M X, DING Y Q, et al.. Review on the intelligent technology for animal husbandry information monitoring [J]. Sci. Agric. Sin., 2012,45(14):2939-2947. | |
6 | PU J, YU C, CHEN X, et al.. Research on Chengdu ma goat recognition based on computer vison [J/OL]. Animals, 2022, 12(14):1746 [2022-03-01]. . |
7 | ALAMEER A, KYRIAZAKIS I, BACARDIT J. Automated recognition of postures and drinking behaviour for the detection of compromised health in pigs [J/OL]. Sci. Rep., 2020, 10(1):13665 [2022-03-01]. . |
8 | 刘建飞.图像识别技术在奶牛体况评分中的应用研究[D]. 济南:山东大学,2012. |
LIU J F. Study on application of image recognition technique in the cow body condition score [D]. Jinan: Shandong University, 2012. | |
9 | HARRIS-BRIDGE G, YOUNG L, HANDEL I, et al.. The use of infrared thermography for detecting digital dermatitis in dairy cattle: what is the best measure of temperature and foot location to use? [J]. Vet. J., 2018, 237:26-33. |
10 | VAN HERTEM T, VIAZZI S, STEENSELS M, et al.. Automatic lameness detection based on consecutive 3D-video recordings [J]. Biosyst. Eng. , 2014, 119:108-116. |
11 | 沈明霞,丁奇安,陈佳,等.信息感知技术在畜禽养殖中的研究进展[J].南京农业大学学报,2022,45(5):1072-1085. |
SHEN M X, DING Q A, CHEN J, et al.. A review of information perception technology in livestock breeding [J]. J. Nanjing Agric. Univ., 2022,45(5):1072-1085. | |
12 | 汪开英,赵晓洋,何勇.畜禽行为及生理信息的无损监测技术研究进展[J].农业工程学报, 2017, 33(20): 197-209. |
WANG K Y, ZHAO X Y, HE Y. Review on noninvasive monitoring technology of poultry behavior and physiological information [J]. Trans. Chin. Soc. Agric. Eng., 2017,33(20):197-209. | |
13 | 蒋树强,闵巍庆,王树徽.面向智能交互的图像识别技术综述与展望[J].计算机研究与发展,2016,53(1):113-122. |
JIANG S Q, MIN W Q, WANG S H. Survey and prospect of intelligent interaction oriented image recognition techniques [J]. J. Comput. Res. Dev., 2016,53(1):113-122. | |
14 | 王保东.计算机图像识别技术的细节问题及对策探讨[J].中阿科技论坛, 2020(4): 84-85. |
WANG B D. Detailed problems and countermeasures of computer image recognition technology [J]. China-Arab States Sci. Technol. Forum, 2020(4):84-85. | |
15 | 王晓阳,俞伟聪,郭显久.计算机图像识别技术的现状和改进建议[J].电脑知识与技术,2020,16(8):204-205. |
16 | 李亚奇.计算机图像识别技术的发展现状与应用实践[J].信息与电脑(理论版),2019(14):30-31, 34. |
LI Y Q. Development status and application practice of computer image recognition technology [J]. China Comput. Communic., 2019(14):30-31, 34. | |
17 | 李敏.图像识别技术在人工智能中的应用探究[J].中国新通信,2022,24(16):74-76. |
18 | 李涛,徐高,梁思涵,等.人工智能图像识别在水利行业的应用进展[J].人民黄河,2022,44(11):163-168. |
LI T, XU G, LIANG S H, et al.. Application progress of artificial intelligence image recognition in water conservancy industry [J]. Yellow River, 2022,44(11):163-168. | |
19 | 范文斌,王亚平,张世武,等.基于图像识别技术在智慧医疗领的研究[J].电子测试,2022,36(11):117-119, 55. |
FAN W B, WANG Y P, ZHANG S W, et al.. Research on intelligent medical collar based on image recognition technology [J]. Electron. Test, 2022,36(11):117-119, 55. | |
20 | 彭荣杰,彭亚雄,陆安江.基于改进PCA+SVM的人脸识别系统[J]. 电子科技, 2021, 34(12):56-61. |
PENG R J, PENG Y X, LU A J, et al.. Face recognition system based on improved PCA+SVM [J]. Electron. Sci. Technol., 2021,34(12):56-61. | |
21 | 李赫.人工智能中的图像识别技术分析[J].无线互联科技,2021,18(17):93-94. |
LI H. Analysis of image recognition technology in artificial intelligence [J]. Wireless Int. Technol., 2021, 18(17):93-94. | |
22 | 蔺伟,张驰.人工智能背景下图像识别技术研究[J].无线互联科技,2022,19(14):108-110. |
LIN W, ZHANG C. Research on image recognition technology in the background of artificial intelligence [J]. Wireless Int. Technol., 2022,19(14):108-110. | |
23 | KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks [C]//Advances in Neural Information Processing Systems. USA:Neural Information Processing Systems, 2012:1097-1105. |
24 | XIAO J R, CHUNG P C, WU H Y, et al.. Detection of strawberry diseases using a convolutional neural network [J/OL]. Plants, 2021, 10(1):31[2022-03-01]. . |
25 | ZHANG K F, LI D, HUANG J Y, et al.. Automated video behavior recognition of pigs using two-stream convolutional networks [J/OL]. Sensors, 2020, 20(4):1085[2022-03-01]. . |
26 | 陆志香,杨梅.基于卷积神经网络的复杂光照变化车牌图像识别[J].激光杂志,2022,43(5):145-150. |
LU Z X, YANG M. Recognition of license plate image with complex illumination change based on convolutiorneural network [J]. Laser J., 2022, 43(5): 145-150. | |
27 | SAKAI K, GILMOUR S, HOSHINO E, et al.. A machine learning-based screening test for sarcopenic dysphagia using image recognition [J/OL]. Nutrients, 2021, 13(11):4009 [2022-03-01]. . |
28 | LEROY T, VRANKEN E, BRECHT A V, et al.. A computer vision method for on-line behavioral quantification of individually caged poultry [J]. Trans. Asabe, 2006, 49(3):795-802. |
29 | 劳凤丹,滕光辉,李军,等.机器视觉识别单只蛋鸡行为的方法[J].农业工程学报,2012,28(24):157-163. |
LAO F D, TENG G H, LI J, et al.. Behavior recognition method for individual laying hen based on computer vision [J]. Trans. Chin. Soc. Agric. Eng., 2012, 28(24): 157-163. | |
30 | 劳凤丹,杜晓冬,滕光辉.基于深度图像的蛋鸡行为识别方法[J].农业机械学报,2017,48(1):155-162. |
LAO F D, DU X D, TENG G H. Automatic recognition method of laying hen behaviors based on depth image processing [J]. Trans. Chin. Soc. Agric. Mach., 2017,48(1):155-162. | |
31 | 刘修林.基于视觉技术的蛋鸡信息监测方法与应用研究[D].太原:中北大学,2018. |
LIU X L. Study on methods and applications of layer chicken information monitoring based on visual technology [D]. Taiyuan: North University of China, 2018. | |
32 | AYDIN A. Development of an early detection system for lameness of broilers using computer vision [J]. Comput. Electron. Agric., 2017, 136: 140-146. |
33 | FANG C, ZHANG T M, ZHENG H K, et al.. Pose estimation and behavior classification of broiler chickens based on deep neural networks [J/OL]. Comput. Electron. Agric., 2020, 105863 [2022-03-01]. . |
34 | FANG C, ZHENG H, YANG J, et al.. Study on poultry pose estimation based on multi-parts detection [J/OL]. Animals, 2022, 12(10): 1322 [2022-03-01]. . |
35 | MOLLAH M B R, HASAN M A, SALAM M A, et al.. Digital image analysis to estimate the live weight of broiler [J]. Comput. Electron. Agric., 2010, 72(1): 48-52. |
36 | MORTENSEN K A, LISOUSKI P, AHRENDT P. Weight prediction of broiler chickens using 3D computer vision [J]. Comput. Electron. Agric., 2016, 123:319-326. |
37 | 王琳,孙传恒,李文勇,等.基于深度图像和BP神经网络的肉鸡体质量估测模型[J].农业工程学报,2017,33(13):199-205. |
WANG L, SUN C H, LI W Y, et al.. Establishment of broiler quality estimation model based on depth image and BP neural network [J]. Trans. Chin. Soc. Agric. Eng., 2017, 33(13):199-205. | |
38 | AMRAEI S, Mehdizadeh S A, Naas I D. Development of a transfer function for weight prediction of live broiler chicken using machine vision [J]. Eng. Agric., 2018, 38(5): 776-782. |
39 | 张宝全.蛋鸡体重评估的视觉检测方法研究[D].太原:中北大学,2021. |
ZHANG B Q. Study on visual detection method for weight assessment of layer chicken [D]. Taiyuan: North University of China, 2021. | |
40 | 郭蓓佳,籍颖,锡建中,等.基于图像处理的蛋鸡体重估测方法研究[J].中国家禽,2021,43(11):68-73. |
GUO B J, JI Y, XI J Z, et al.. Study on estimation model of layer weight based on image processing [J]. China Poultry, 2021, 43(11):68-73. | |
41 | JIE H, LIU Y P. Breeding for disease resistance in poultry: opportunities with challenges [J]. World’s Poultry Sci. J., 2011, 67(4): 687-696. |
42 | WILCOX C S, PATTERSON J, CHENG H W. Use of thermography to screen for subclinical bumblefoot in poultry [J]. Poultry Sci., 2009, 88(6): 1176-1180. |
43 | MOE R O, BOHLIN J, FLØ A, et al.. Effects of subclinical footpad dermatitis and emotional arousal on surface foot temperature recorded with infrared thermography in turkey toms (Meleagris gallopavo) [J]. Poult. Sci., 2018, 97(7): 2249-2257. |
44 | ZHUANG X L, ZHUANG T M. Detection of sick broilers by digital image processing and deep learning [J]. Biosyst. Eng., 2019, 179: 106-116. |
45 | QUACH L D, QUOC N P, THI N H, et al.. Using surf to improve resnet-50 model for poultry disease recognition algorithm [C]// Proceedings of 2020 International Conference on Computational Intelligence (ICCI). Malaysia: IEEE, 2020: 317-321. |
46 | MBELWA H, MBELWA J, MACHUVE D. Deep convolutional neural network for chicken diseases detection [J/OL]. Int. J. Adv. Comput. Sci. Appl., 2021, 12(2): 120295 [2022-03-01]. . |
47 | COLLES F M, CAIN R J, NICKSON T, et al.. Monitoring chicken flock behaviour provides early warning of infection by human pathogen campylobacter [J/OL]. Proc. Biol. Sci., 2016, 283(1822):2323 [2022-03-01]. . |
48 | AYDIN A. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens [J]. Comput. Electron. Agric., 2017, 135:4-10. |
49 | 沈明霞,李嘉位,陆明洲,等.基于动态多特征变量的黄羽肉鸡跛行状态定量评价方法[J].农业机械学报,2018,49(9):35-44. |
SHEN M X, LI J W, LU M Z, et al.. Evaluation method of limping status of broilers based on dynamic multi-feature variables [J]. Trans. Chin. Soc. Agric. Machin., 2018, 49(9):35-44. | |
50 | NAAS I D, LAGANA M, NETO M M, et al.. Image analysis for assessing broiler breeder behavior response to thermal environment [J]. Eng. Agric.,2012, 32(4):624-632. |
51 | 郑双阳,王琳琳.基于机器视觉对高阶直立式鸡笼内蛋鸡的监视系统的开发[J].吉林农业大学学报,2009,31(4):476-480. |
ZHENG S Y, WANG L L. Development of monitoring system for layers rearing in multi-tier vertical cages using machine vision [J]. J. Jilin Agric. Univ., 2009, 31(4):476-480. | |
52 | OKINDA C, LU M, LIU L, et al.. A machine vision system for early detection and prediction of sick birds: a broiler chicken model [J]. Biosyst. Eng., 2019, 188 : 229-242. |
53 | 李亚硕,毛文华,胡小安,等.基于机器视觉识别鸡冠颜色的病鸡检测方法[J].机器人技术与应用,2014(5):23-25 |
54 | CHEN J Y. Using CNN for detection of diseases [J/OL]. J. Phys.: Conference Series, 2021, 1936(1): 012022 [2022-03-01]. . |
55 | ZHUANG X, BI M, GUO J, et al.. Development of an early warning algorithm to detect sick broilers [J]. Comput. Electron. Agric., 2018, 144: 102-113. |
56 | 庄晓霖.基于机器视觉的家禽异常行为检测方法研究[D].广州:华南农业大学,2019. |
ZHUANG X L. Research on detection methods of poultry abnormal behaviors based on machine vision [D]. Guangzhou: South China Agricultural University, 2019. | |
57 | 毕敏娜,张铁民,庄晓霖,等.基于鸡头特征的病鸡识别方法研究[J].农业机械学报,2018,49(1):51-57. |
BI M N, ZHANG T M, ZHUANG X L, et al.. Recognition method of sick yellow feather chicken based on head features [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(1):51-57. | |
58 | 沈明霞,陆鹏宇,刘龙申,等.基于红外热成像的白羽肉鸡体温检测方法[J].农业机械学报,2019,50(10):222-229. |
SHEN M X, LU P Y, LIU L S, et al.. Body temperature detection method of ross broiler based on infrared thermography [J]. Trans. Chin. Soc. Agric. Mach., 2019, 50(10):222-229. | |
59 | WANG J, SHEN M, LIU L, et al.. Recognition and classification of broiler droppings based on deep convolutional neural network [J/OL]. J. Sensors, 2019, 3823515 [2022-03-01]. . |
60 | GERONIMO B C, MASTELINI S M, CARVALHO R H, et al.. Computer vision system and near-infrared spectroscopy for identification and classification of chicken with wooden breast, and physicochemical and technological characterization [J]. Infrared Phys. Technol., 2019, 96 : 303-310. |
61 | TAHERI-GARAVAND A, FATAHI S, SHAHBAZI F, et al.. A nondestructive intelligent approach to real‐time evaluation of chicken meat freshness based on computer vision technique [J/OL]. J. Food Process Eng., 2019, 42(4):13039 [2022-03-01]. . |
62 | 涂冬成. 禽肉肉色、弹性和嫩度的图像和激光诱导荧光无损检测技术研究[D].南昌:江西农业大学,2011. |
TU D C. Meat quality and nondestructive detection methods of broiler breast fillets with woody breast myopathy [D]. Nanchang: Jiangxi Agricultural University, 2011. | |
63 | 丁筱玲,吴玉红,周田田,等.基于机器视觉技术的鸡翅质量预测[J].江苏农业科学,2017,45(9):208-212. |
64 | 邢志中,张海东,王孟,等.基于计算机视觉和神经网络的鸡蛋新鲜度检测[J].江苏农业科学,2017,45(11):160-163. |
65 | 梁丹,李平,梁冬泰,等.基于机器视觉的鸡蛋内外品质一体化检测与分级系统[J].中国食品学报,2020,20(11):247-254. |
LIANG D, LI P, LIANG D T, et al.. Integrated inspecting and grading system of the egg quality based on machine vision [J]. J. Chin. Inst. Food Sci. Technol., 2020, 20(11):247-254. | |
66 | ALIKHANOV J, PENCHEV S M, GEORGIEVA T D, et al.. Design and performance of an automatic egg sorting system based on computer vision [J]. TEM J., 2019, (8) 4:1319-1325. |
67 | HARNSOONGNOEN S, JAROENSUK N. The grades and freshness assessment of eggs based on density detection using machine vision and weighing sensor [J/OL]. Sci. Rep., 2021, 11(1): 16640 [2022-03-01] . . |
68 | ZHU Z H, YE Z F, TANG Y. Nondestructive identification for gender of chicken eggs based on GA-BPNN with double hidden layers [J/OL]. J. Appl. Poultry Res., 2021, 30(4): 100203 [2022-03-01]. . |
69 | SCHOLZ A M, BÜNGER L, KONGSRO J, et al.. Non-invasive methods for the determination of body and carcass composition in livestock: dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: invited review [J]. Animal, 2015, 9(7):1250-1264. |
70 | SCHALLIER S, LI C, LESUISSE J, et al.. Dual-energy X-ray absorptiometry is a reliable non-invasive technique for determining whole body composition of chickens [J]. Poultry Sci., 2019, 98(6): 2652-2661. |
71 | GRANDHAYE J, LECOMPTE F, STAUB C, et al.. Assessment of the body development kinetic of broiler breeders by non-invasive imaging tools [J]. Poultry Sci., 2019, 98(9):4140-4152. |
72 | 戚超,徐佳琪,刘超,等.基于机器视觉和机器学习技术的鸡胴体质量自动分级方法[J].南京农业大学学报,2019,42(3):551-558. |
QI C, XU J Q, LIU C, et al.. Automatic classification of chicken carcass weight based on machine vision and machine learning technology [J]. J. Nanjing Agric. Univ., 2019, 42(3):551-558. | |
73 | 王树才,陶凯,李航.基于机器视觉定位的家禽屠宰净膛系统设计与试验[J].农业机械学报,2018,49(1):335-343. |
WANG S C, TAO K, LI H. Design and experiment of poultry eviscerator system based on machine vision positioning [J]. Trans. Chin. Soc. Agric. Mach., 2018, 49(1):335-343. | |
74 | 陈坤杰,李航,于镇伟,等.基于机器视觉的鸡胴体质量分级方法[J].农业机械学报,2017,48(6):290-295, 372. |
CHEN K J, LI H, YU Z W, et al.. Grading of chicken carcass weight based on machine vision [J]. Trans. Chin. Soc. Agric. Mach., 2017, 48(6):290-295, 372. | |
75 | 瞿子淇.无人养鸡场死鸡检测方法研究[D].长春:吉林大学,2019. |
QU Z Q. Study on detection method of dead chicken in unmanned chicken farm [D]. Changchun: Jilin University, 2019. | |
76 | 刘冬.精准畜牧中机器视觉关键技术研究及应用[D]. 杨凌:西北农林科技大学,2020. |
LIU D. Key technology of computer vision in precision livestock farming [D]. Yangling: Northwest A&F University, 2020. | |
77 | LI G, HUANG Y, CHEN Z, et al.. Practices and applications of convolutional neural network-based computer vision systems in animal farming: a review [J/OL]. Sensors, 2021, 21: 1492 [2022-03-01]. . |
78 | 何东健,刘冬,赵凯旋.精准畜牧业中动物信息智能感知与行为检测研究进展[J].农业机械学报,2016,47(5):231-244. |
HE D J, LIU D, ZHAO K X. Review of perceiving animal information and behavior in precision livestock farming [J]. Trans. Chin. Soc. Agric. Mach., 2016,47(5):231-244. | |
79 | 连京华,李惠敏,祝伟,等.家禽生产智能巡检机器人的设计[J].中国家禽,2019,41(18):72-75. |
LIAN J H, LI H M, ZHU W, et al.. Design and realization of intelligent inspection robot for poultry production [J]. China Poultry, 2019,41(18):72-75. |
[1] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[2] | Zijian CAO, Yanhong QIU, Shuang WANG, Juan ZHAO, Suyue ZHENG, Guanghang QIAO, Wentao QIN. Application of Multiplex PCR on Detection of Plant Pathogens [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 216-224. |
[3] | Xing LI, Ning ZHAO, Yong JIANG, Zhixiu WANG, Guohong CHEN, Hao BAI, Guobin CHANG. Recent Advances in Sensor Technology of Modern Poultry Production [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 1-11. |
[4] | Zhigang ZHENG, Li XIANG, Gongyi LIU, Cai XU, Bin QIN, Weiqin WANG, Huabin ZHENG, Qiyuan TANG. Effects of Nitrogen Application Rate and Density on Growth and Yield of Orderly Machine-thrown Early Rice [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 132-143. |
[5] | Feifan HOU, Xiaowen ZHANG, Jiaqi WANG, Jianzhen ZHANG, Kaiquan LI, Xuebin YIN. Effect of Selenium Fertilizer Application Position on Physiological Characters and Selenium Accumulation in Wheat [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 144-152. |
[6] | Yaxuan MENG, Wei MA, Xuhang YAO, Yingqi SUN, Xin ZHONG, Shan HUANG, Qiaoyun WENG, Yinghui LIU, Jincheng YUAN. Study on the Response Factors of Maize Yield to Nitrogen Fertilizer [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 153-160. |
[7] | Jiangang JIN, Zaifang TIAN, Minna ZHENG, Jiahui KANG. Effect of Different Fertilization Measures on the Diversity of Soil Bacteria Communities in Fed oats (Avena sativa L.) [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 152-160. |
[8] | Liqing MIAO, Xuhui MA, Suzhen LI, Rumei CHEN, Xiaoqing LIU. Biosynthesis and Industrial Application of Astaxanthin [J]. Journal of Agricultural Science and Technology, 2023, 25(3): 21-29. |
[9] | Qiaoyi HUANG, Yongpei WU, Xu HUANG, Ping LI, Hongting FU, Mu ZHANG, Yuwan PANG, Zhaobing ZENG, Shuanhu TANG. Impact of Controlled-release Urea Combined with Conventional Urea on Yield and Nitrogen Utilization Efficiency of Spring Sweet Corn Under One-off Application [J]. Journal of Agricultural Science and Technology, 2023, 25(2): 163-173. |
[10] | Hongbo LI, Yueyue CHEN, Yujie YANG, Qiqi XU, Lei QIN, Xin CAI, Lining XIA. Drug Resistance and Genotype Analysis of Escherichia coli in Healthy Chickens from Zhaosu, Yili, Xinjiang [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 123-131. |
[11] | Qiangzhou WANG, Shiyu PAN, Mengya FANG, Wei LI, Jiaxing WANG, Yinyin LIU, Shihao CHEN. Construction of Chicken Embryo Fibroblast Cell Line with TET2 Gene Knockout Based on CRISPR-Cas9 Technology [J]. Journal of Agricultural Science and Technology, 2023, 25(11): 227-233. |
[12] | Yantong ZHANG, Qianmin SU. Image Recognition of Corn Disease Based on Transfer Learning [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 119-125. |
[13] | Yangyang CAI, Xiuping TAO, Tong LI, Bin SHANG, Jianchao SONG, Lu LIU. Preparation and Application of Natural Polymer Flocculants [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 165-172. |
[14] | Yurong SHEN, Ran LI, Minggang XU, Huaiping ZHOU, Ping LIU, Nan SUN. Responses of Soil Available Phosphorus and Phosphorus Forms to Phosphorus Fertilizer Application Times [J]. Journal of Agricultural Science and Technology, 2023, 25(10): 173-181. |
[15] | Ao ZHANG, Hao BAI, Yulin BI, Yingquan HUANG, Zhixiu WANG, Yong JIANG, Guohong CHEN, Guobin CHANG. Research Progress on Influencing Factors of Chicken Core Temperature [J]. Journal of Agricultural Science and Technology, 2023, 25(1): 26-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||