Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (9): 12-24.DOI: 10.13304/j.nykjdb.2024.0216
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Ronghua WEI1(), Ming YIN2, Wensheng WANG2(), Yanru CUI1()
Received:
2024-03-20
Accepted:
2024-05-21
Online:
2024-09-15
Published:
2024-09-13
Contact:
Wensheng WANG,Yanru CUI
通讯作者:
王文生,崔彦茹
作者简介:
魏荣华 E-mail:weironghua1999@163.com
CLC Number:
Ronghua WEI, Ming YIN, Wensheng WANG, Yanru CUI. Discovering of QTLs and Candidate Genes Related to Rice Heading Period Traits Based on BSA-seq[J]. Journal of Agricultural Science and Technology, 2024, 26(9): 12-24.
魏荣华, 尹明, 王文生, 崔彦茹. 基于BSA-seq发掘水稻抽穗期相关QTLs及候选基因[J]. 中国农业科技导报, 2024, 26(9): 12-24.
样品 Sample | 过滤后数据 Clean data/bp | Q30/% | GC/% | 总读段 Total reads | 读段比对率 Mapped reads/% | 覆盖度 Coverage rate/% | |
---|---|---|---|---|---|---|---|
1× | 4× | ||||||
HQ31 | 5 744 148 300 | 92.02 | 41.25 | 35 621 290 | 96.69 | 89.98 | 81.90 |
OHQ20 | 5 343 193 500 | 91.24 | 42.09 | 38 294 322 | 96.87 | 90.43 | 82.90 |
适中Moderate | 19 863 114 000 | 91.69 | 44.01 | 12 1353 842 | 96.86 | 95.22 | 92.36 |
青棵Green | 18 203 076 300 | 91.94 | 45.05 | 132 420 760 | 96.70 | 95.83 | 92.77 |
早熟Early | 19 540 310 100 | 91.57 | 44.81 | 130 268 734 | 94.75 | 96.09 | 92.93 |
Table 1 BSA-seq sequencing quality analysis of three mixed pools and their parents
样品 Sample | 过滤后数据 Clean data/bp | Q30/% | GC/% | 总读段 Total reads | 读段比对率 Mapped reads/% | 覆盖度 Coverage rate/% | |
---|---|---|---|---|---|---|---|
1× | 4× | ||||||
HQ31 | 5 744 148 300 | 92.02 | 41.25 | 35 621 290 | 96.69 | 89.98 | 81.90 |
OHQ20 | 5 343 193 500 | 91.24 | 42.09 | 38 294 322 | 96.87 | 90.43 | 82.90 |
适中Moderate | 19 863 114 000 | 91.69 | 44.01 | 12 1353 842 | 96.86 | 95.22 | 92.36 |
青棵Green | 18 203 076 300 | 91.94 | 45.05 | 132 420 760 | 96.70 | 95.83 | 92.77 |
早熟Early | 19 540 310 100 | 91.57 | 44.81 | 130 268 734 | 94.75 | 96.09 | 92.93 |
Fig. 2 Distribution of offspring gradient difference △SNPIand △IndelI on chromosomesA: △SNPI; B: △InDelI. The point in the figure represents SNP (Indel) site. Its abscissa is the middle value of the window where the SNP site is located, and the ordinate is the difference in index. Different chromosomes are distinguished by different colors; the black line in the figure is the mean value, the blue line is 95% threshold, and the purple line is 99% threshold
染色体 Chromosome | 起始位置 Start position/bp | 终止位置 End position/bp | 基因数量 Gene number |
---|---|---|---|
Chr5 | 9 171 001 | 9 172 000 | 1 |
Chr5 | 15 980 001 | 15 981 000 | 1 |
Chr6 | 819 788 | 862 809 | 2 |
Chr6 | 24 267 001 | 24 268 000 | 1 |
Chr7 | 3 282 221 | 3 515 234 | 5 |
Chr7 | 7 078 687 | 7 184 099 | 6 |
Chr7 | 7 661 654 | 8 210 957 | 19 |
Chr7 | 9 362 884 | 13 851 724 | 151 |
Chr7 | 14 502 162 | 16 910 700 | 57 |
Chr7 | 17 474 000 | 17 474 209 | 1 |
Chr7 | 26 393 554 | 26 913 290 | 5 |
Chr7 | 28 410 165 | 28 428 916 | 3 |
Chr8 | 559 292 | 634 638 | 3 |
Chr8 | 1 038 578 | 1 075 302 | 5 |
Chr8 | 3 660 741 | 4 179 420 | 13 |
Chr8 | 5 032 940 | 5 032 946 | 1 |
Chr8 | 6 217 190 | 6 217 199 | 1 |
Chr8 | 9 001 410 | 9 001 425 | 1 |
Chr8 | 9 310 563 | 9 510 022 | 2 |
Chr8 | 10 365 320 | 10 920 326 | 6 |
Chr8 | 11 279 434 | 11 279 468 | 1 |
Chr8 | 11 589 580 | 11 589 588 | 1 |
Chr8 | 12 272 300 | 12 272 330 | 1 |
Chr8 | 13 063 007 | 13106 062 | 2 |
Chr8 | 13 692 000 | 13 692 049 | 1 |
Chr8 | 14 083 249 | 14 330 070 | 4 |
Chr8 | 14 732 433 | 14 913 038 | 2 |
Chr8 | 15 216 765 | 15 796 339 | 6 |
Chr8 | 16 630 600 | 16 630 619 | 1 |
Chr8 | 17 148 084 | 17 153 579 | 2 |
Chr8 | 18 006 500 | 18 006 529 | 1 |
Chr8 | 18 345 182 | 18 452 701 | 2 |
Chr8 | 18 803 600 | 18 803 609 | 1 |
Chr8 | 19 730 003 | 20 312 233 | 16 |
Chr9 | 19 462 800 | 19 462 880 | 1 |
Chr9 | 20 098 700 | 20 098 749 | 1 |
Chr10 | 260 200 | 260 233 | 1 |
Chr11 | 6 523 296 | 6 613 238 | 3 |
Chr11 | 19 092 100 | 19 092 108 | 1 |
Chr12 | 3 918 600 | 3 918 631 | 1 |
Chr12 | 10 337 833 | 10 337 834 | 1 |
Table 2 SNP association interval
染色体 Chromosome | 起始位置 Start position/bp | 终止位置 End position/bp | 基因数量 Gene number |
---|---|---|---|
Chr5 | 9 171 001 | 9 172 000 | 1 |
Chr5 | 15 980 001 | 15 981 000 | 1 |
Chr6 | 819 788 | 862 809 | 2 |
Chr6 | 24 267 001 | 24 268 000 | 1 |
Chr7 | 3 282 221 | 3 515 234 | 5 |
Chr7 | 7 078 687 | 7 184 099 | 6 |
Chr7 | 7 661 654 | 8 210 957 | 19 |
Chr7 | 9 362 884 | 13 851 724 | 151 |
Chr7 | 14 502 162 | 16 910 700 | 57 |
Chr7 | 17 474 000 | 17 474 209 | 1 |
Chr7 | 26 393 554 | 26 913 290 | 5 |
Chr7 | 28 410 165 | 28 428 916 | 3 |
Chr8 | 559 292 | 634 638 | 3 |
Chr8 | 1 038 578 | 1 075 302 | 5 |
Chr8 | 3 660 741 | 4 179 420 | 13 |
Chr8 | 5 032 940 | 5 032 946 | 1 |
Chr8 | 6 217 190 | 6 217 199 | 1 |
Chr8 | 9 001 410 | 9 001 425 | 1 |
Chr8 | 9 310 563 | 9 510 022 | 2 |
Chr8 | 10 365 320 | 10 920 326 | 6 |
Chr8 | 11 279 434 | 11 279 468 | 1 |
Chr8 | 11 589 580 | 11 589 588 | 1 |
Chr8 | 12 272 300 | 12 272 330 | 1 |
Chr8 | 13 063 007 | 13106 062 | 2 |
Chr8 | 13 692 000 | 13 692 049 | 1 |
Chr8 | 14 083 249 | 14 330 070 | 4 |
Chr8 | 14 732 433 | 14 913 038 | 2 |
Chr8 | 15 216 765 | 15 796 339 | 6 |
Chr8 | 16 630 600 | 16 630 619 | 1 |
Chr8 | 17 148 084 | 17 153 579 | 2 |
Chr8 | 18 006 500 | 18 006 529 | 1 |
Chr8 | 18 345 182 | 18 452 701 | 2 |
Chr8 | 18 803 600 | 18 803 609 | 1 |
Chr8 | 19 730 003 | 20 312 233 | 16 |
Chr9 | 19 462 800 | 19 462 880 | 1 |
Chr9 | 20 098 700 | 20 098 749 | 1 |
Chr10 | 260 200 | 260 233 | 1 |
Chr11 | 6 523 296 | 6 613 238 | 3 |
Chr11 | 19 092 100 | 19 092 108 | 1 |
Chr12 | 3 918 600 | 3 918 631 | 1 |
Chr12 | 10 337 833 | 10 337 834 | 1 |
染色体 Chromosome | 起始位置 Start position/bp | 终止位置 End position/bp | 基因数量 Gene number |
---|---|---|---|
Chr5 | 7 966 753 | 8 080 035 | 2 |
Chr6 | 867 000 | 867 072 | 2 |
Chr6 | 24 267 600 | 24 267 692 | 1 |
Chr7 | 5 651 500 | 5 651 596 | 1 |
Chr7 | 7 145 117 | 7 206 410 | 3 |
Chr7 | 7 928 606 | 8 179 003 | 5 |
Chr7 | 9 564 466 | 10 124 576 | 4 |
Chr7 | 10 499 474 | 11 646 584 | 12 |
Chr7 | 12 529 769 | 13 851 742 | 29 |
Chr7 | 14 503 097 | 15 243 927 | 10 |
Chr7 | 15 876 095 | 16 832 885 | 12 |
Chr7 | 17 399 500 | 17 399 542 | 1 |
Chr8 | 559 300 | 559 352 | 1 |
Chr8 | 1 040 057 | 1 050 460 | 3 |
Chr8 | 3 948 972 | 4 283 090 | 4 |
Chr8 | 5 623 000 | 5 623 045 | 1 |
Chr8 | 10 447 300 | 10 447 314 | 1 |
Chr8 | 14 970 700 | 14 970 730 | 1 |
Chr8 | 15 598 900 | 15 598 941 | 1 |
Chr8 | 18 006 500 | 18 006 549 | 1 |
Chr8 | 18 452 681 | 18 452 693 | 1 |
Chr8 | 19 739 048 | 20 197 724 | 11 |
Chr9 | 19 759 500 | 19 759 596 | 2 |
Chr9 | 20 098 700 | 20 098 775 | 1 |
Chr11 | 5 919 041 | 6 002 538 | 2 |
Chr11 | 18 350 200 | 18 350 292 | 1 |
Chr12 | 10 137 200 | 10 137 217 | 1 |
Table 3 Indel correlation interval
染色体 Chromosome | 起始位置 Start position/bp | 终止位置 End position/bp | 基因数量 Gene number |
---|---|---|---|
Chr5 | 7 966 753 | 8 080 035 | 2 |
Chr6 | 867 000 | 867 072 | 2 |
Chr6 | 24 267 600 | 24 267 692 | 1 |
Chr7 | 5 651 500 | 5 651 596 | 1 |
Chr7 | 7 145 117 | 7 206 410 | 3 |
Chr7 | 7 928 606 | 8 179 003 | 5 |
Chr7 | 9 564 466 | 10 124 576 | 4 |
Chr7 | 10 499 474 | 11 646 584 | 12 |
Chr7 | 12 529 769 | 13 851 742 | 29 |
Chr7 | 14 503 097 | 15 243 927 | 10 |
Chr7 | 15 876 095 | 16 832 885 | 12 |
Chr7 | 17 399 500 | 17 399 542 | 1 |
Chr8 | 559 300 | 559 352 | 1 |
Chr8 | 1 040 057 | 1 050 460 | 3 |
Chr8 | 3 948 972 | 4 283 090 | 4 |
Chr8 | 5 623 000 | 5 623 045 | 1 |
Chr8 | 10 447 300 | 10 447 314 | 1 |
Chr8 | 14 970 700 | 14 970 730 | 1 |
Chr8 | 15 598 900 | 15 598 941 | 1 |
Chr8 | 18 006 500 | 18 006 549 | 1 |
Chr8 | 18 452 681 | 18 452 693 | 1 |
Chr8 | 19 739 048 | 20 197 724 | 11 |
Chr9 | 19 759 500 | 19 759 596 | 2 |
Chr9 | 20 098 700 | 20 098 775 | 1 |
Chr11 | 5 919 041 | 6 002 538 | 2 |
Chr11 | 18 350 200 | 18 350 292 | 1 |
Chr12 | 10 137 200 | 10 137 217 | 1 |
染色体 Chromosome | 候选基因 Candidate gene | 基因注释 Gene annotation |
---|---|---|
Chr6 | LOC_Os06g40704 | 基质膜相关蛋白 Stromal membrane-associated protein |
Chr7 | LOC_Os07g12520 | 锌离子结合蛋白 Zinc ion binding protein |
Chr7 | LOC_Os07g12530 | ABC1家族结构域蛋白 ABC1 family domain containing protein |
Chr7 | LOC_Os07g14160 | 多聚半乳糖醛酸酶 Polygalacturonase |
Chr7 | LOC_Os07g18560 | 含有OsFBLD6-F-box,LRR和FBD结构域的蛋白 OsFBLD6 - F-box, LRR and FBD domain containing protein |
Chr7 | LOC_Os07g19070 | 前折叠蛋白 Prefoldin |
Chr7 | LOC_Os07g19210 | 细胞色素P450 Cytochrome P450 |
Chr7 | LOC_Os07g22710 | 钙依赖性蛋白激酶 CAMK_CAMK_like.32-CAMK includes calcium/calmodulin depedent protein kinases |
Chr7 | LOC_Os07g22720 | 含氧酸脱氢酶酰基转移酶结构域蛋白 2-oxo acid dehydrogenases acyltransferase domain containing protein |
Chr7 | LOC_Os07g22930 | 淀粉合酶 Starch synthase |
Chr7 | LOC_Os07g23169 | 甲基转移酶 Methyltransferase |
Chr7 | LOC_Os07g23470 | 索马甜 Thaumatin |
Chr7 | LOC_Os07g23740 | 甾醇3-β-葡萄糖基转移酶 Sterol 3-beta-glucosyltransferase |
Chr7 | LOC_Os07g23890 | 含有OsFBDUF36-F-box和DUF结构域的蛋白 OsFBDUF36-F-box and DUF domain containing protein |
Chr7 | LOC_Os07g23900 | 含有OsFBX234-F-box结构域的蛋白 OsFBX234-F-box domain containing protein |
Chr7 | LOC_Os07g23944 | 糖基水解酶31家族 Glycosyl hydrolase, family 31 |
Chr7 | LOC_Os07g24350 | 含有同源盒结构域的蛋白 Homeobox domain containing protein |
Chr7 | LOC_Os07g28110 | 细胞色素P450 Cytochrome P450 |
Chr7 | LOC_Os07g28480 | 谷胱甘肽S-转移酶 Glutathione S-transferase |
Chr8 | LOC_Os08g02520 | OsSAUR31-生长素响应SAUR基因家族成员 OsSAUR31-Auxin-responsive SAUR gene family member |
Table 4 Candidate genes within the consistent interval between SNP and Indel
染色体 Chromosome | 候选基因 Candidate gene | 基因注释 Gene annotation |
---|---|---|
Chr6 | LOC_Os06g40704 | 基质膜相关蛋白 Stromal membrane-associated protein |
Chr7 | LOC_Os07g12520 | 锌离子结合蛋白 Zinc ion binding protein |
Chr7 | LOC_Os07g12530 | ABC1家族结构域蛋白 ABC1 family domain containing protein |
Chr7 | LOC_Os07g14160 | 多聚半乳糖醛酸酶 Polygalacturonase |
Chr7 | LOC_Os07g18560 | 含有OsFBLD6-F-box,LRR和FBD结构域的蛋白 OsFBLD6 - F-box, LRR and FBD domain containing protein |
Chr7 | LOC_Os07g19070 | 前折叠蛋白 Prefoldin |
Chr7 | LOC_Os07g19210 | 细胞色素P450 Cytochrome P450 |
Chr7 | LOC_Os07g22710 | 钙依赖性蛋白激酶 CAMK_CAMK_like.32-CAMK includes calcium/calmodulin depedent protein kinases |
Chr7 | LOC_Os07g22720 | 含氧酸脱氢酶酰基转移酶结构域蛋白 2-oxo acid dehydrogenases acyltransferase domain containing protein |
Chr7 | LOC_Os07g22930 | 淀粉合酶 Starch synthase |
Chr7 | LOC_Os07g23169 | 甲基转移酶 Methyltransferase |
Chr7 | LOC_Os07g23470 | 索马甜 Thaumatin |
Chr7 | LOC_Os07g23740 | 甾醇3-β-葡萄糖基转移酶 Sterol 3-beta-glucosyltransferase |
Chr7 | LOC_Os07g23890 | 含有OsFBDUF36-F-box和DUF结构域的蛋白 OsFBDUF36-F-box and DUF domain containing protein |
Chr7 | LOC_Os07g23900 | 含有OsFBX234-F-box结构域的蛋白 OsFBX234-F-box domain containing protein |
Chr7 | LOC_Os07g23944 | 糖基水解酶31家族 Glycosyl hydrolase, family 31 |
Chr7 | LOC_Os07g24350 | 含有同源盒结构域的蛋白 Homeobox domain containing protein |
Chr7 | LOC_Os07g28110 | 细胞色素P450 Cytochrome P450 |
Chr7 | LOC_Os07g28480 | 谷胱甘肽S-转移酶 Glutathione S-transferase |
Chr8 | LOC_Os08g02520 | OsSAUR31-生长素响应SAUR基因家族成员 OsSAUR31-Auxin-responsive SAUR gene family member |
染色体 Chromosome | 起始位置 Start position/bp | 终止位置 End position/bp | 基因数量 Gene number |
---|---|---|---|
Chr12 | 10 696 100 | 10 696 167 | 1 |
Chr12 | 11 928 400 | 11 928 496 | 1 |
Chr12 | 13 782 500 | 13 782 529 | 1 |
Chr12 | 21 876 500 | 21 876 519 | 1 |
Chr12 | 22 742 600 | 22 742 664 | 1 |
Table 2 SNP association interval
染色体 Chromosome | 起始位置 Start position/bp | 终止位置 End position/bp | 基因数量 Gene number |
---|---|---|---|
Chr12 | 10 696 100 | 10 696 167 | 1 |
Chr12 | 11 928 400 | 11 928 496 | 1 |
Chr12 | 13 782 500 | 13 782 529 | 1 |
Chr12 | 21 876 500 | 21 876 519 | 1 |
Chr12 | 22 742 600 | 22 742 664 | 1 |
染色体 Chromosome | 候选基因 Candidate gene | 基因注释 Gene annotation |
---|---|---|
Chr8 | LOC_Os08g02550 | 蛋白酶体亚基 Proteasome subunit |
Chr8 | LOC_Os08g07060 | 叶绿体呼吸 Chlororespiratory reduction 6 |
Chr8 | LOC_Os08g07080 | 萜烯合酶 Terpene synthase |
Chr8 | LOC_Os08g07200 | UDP-葡萄糖醛酸基/UDP-葡萄糖基转移酶 UDP-glucoronosyl/UDP-glucosyl transferase |
Chr8 | LOC_Os08g30020 | 膜蛋白 Membrane protein |
Chr8 | LOC_Os08g31830 | 含有UPF0041结构域的蛋白 UPF0041 domain containing protein |
Chr8 | LOC_Os08g32160 | 氧化还原酶,含2OG-Fell加氧酶结构域的蛋白 Oxidoreductase, 2OG-FeII oxygenase domain containing protein |
Chr8 | LOC_Os08g32370 | 粘蛋白相关表面蛋白 Mucin-associated surface protein |
Chr9 | LOC_Os09g34060 | 转录因子RF2a Transcription factor RF2a |
Table 4 Candidate genes within the consistent interval between SNP and Indel
染色体 Chromosome | 候选基因 Candidate gene | 基因注释 Gene annotation |
---|---|---|
Chr8 | LOC_Os08g02550 | 蛋白酶体亚基 Proteasome subunit |
Chr8 | LOC_Os08g07060 | 叶绿体呼吸 Chlororespiratory reduction 6 |
Chr8 | LOC_Os08g07080 | 萜烯合酶 Terpene synthase |
Chr8 | LOC_Os08g07200 | UDP-葡萄糖醛酸基/UDP-葡萄糖基转移酶 UDP-glucoronosyl/UDP-glucosyl transferase |
Chr8 | LOC_Os08g30020 | 膜蛋白 Membrane protein |
Chr8 | LOC_Os08g31830 | 含有UPF0041结构域的蛋白 UPF0041 domain containing protein |
Chr8 | LOC_Os08g32160 | 氧化还原酶,含2OG-Fell加氧酶结构域的蛋白 Oxidoreductase, 2OG-FeII oxygenase domain containing protein |
Chr8 | LOC_Os08g32370 | 粘蛋白相关表面蛋白 Mucin-associated surface protein |
Chr9 | LOC_Os09g34060 | 转录因子RF2a Transcription factor RF2a |
Fig. 6 LOC_Os07g22720 haplotype analysisA: Heading stage distribution of LOC_Os07g22720 haplotypes; B: Distribution of different haplotypes of LOC_Os07g22720 in subpopulations; C: Frequency of different haplotypes of LOC_Os07g22720 in subpopulations; D: Haplotypes of CDS region of LOC_Os07g22720. Different small letters indicate significant differences between haplotypes at P<0.05 level
Fig. 7 LOC_Os07g23740 haplotype analysisA: Heading stage distribution of LOC_Os07g23740 haplotypes; B: Distribution of different haplotypes of LOC_Os07g23740 in subpopulations; C: Frequency of different haplotypes of LOC_Os07g23740 in subpopulations; D: Haplotypes of CDS region of LOC_Os07g23740. Different small letters indicate significant differences between haplotypes at P<0.05 level
Fig. 8 LOC_Os08g07200 haplotype significance analysisA: Heading stage distribution of LOC_Os08g07200 haplotypes; B: Distribution of different haplotypes of LOC_Os0g07200 in subpopulations; C: Frequency of different haplotypes of LOC_Os08g07200 in subpopulations; D: Haplotypes of CDS region of LOC_Os08g07200. Different small letters indicate significant differences between haplotypes at P<0.05 level
1 | 崔月.水稻抽穗期基因组合对产量相关性状的影响及其优化调控[D].沈阳:沈阳农业大学, 2020. |
CUI Y. Optimization of rice productivity across a large latitudinal gradient using induce mutation in heading date [D]. Shenyang: Shenyang Agricultural University, 2020. | |
2 | 赵凌,梁文化,赵春芳,等.利用高密度Bin遗传图谱定位水稻抽穗期QTL[J].作物学报, 2023,49(1):119-128. |
ZHAO L, LIANG W H, ZHAO C F, et al.. Mapping of QTLs for heading date of rice with high-density bin genetic map [J]. Acta Agron. Sin., 2023, 49(1): 119-128. | |
3 | 郭梁,张振华,庄杰云.水稻抽穗期QTL及其与产量性状遗传控制的关系[J].中国水稻科学,2012,26(2):235-245. |
GUO L, ZHANG Z H, ZHUANG J Y. Quantitative trait loci for heading date and their relationship with the genetic control of yield traits in rice (Oryza sativa L.) [J]. Chin. J. Rice Sci., 2012,26(2): 235-245. | |
4 | 胡时开,苏岩,叶卫军,等.水稻抽穗期遗传与分子调控机理研究进展[J].中国水稻科学, 2012,26(3):373-382. |
HU S K, SU Y, YE W J, et al.. Advances in genetic analysis and molecular regulation mechanism of heading date in rice (Oryza sativa L.) [J]. Chin. J. Rice Sci., 2012, 26(3): 373-382. | |
5 | 林鸿宣,钱惠荣,熊振民.几个水稻品种抽穗期主效基因与微效基因的定位研究[J].遗传学报,1996(3):205-213. |
LIN H X, QIAN H R, XIONG Z M. Mapping of major genes and minor genes for heading date in several rice varieties (Oryza sativa L.) [J]. J. Genet. Genomics, 1996 (3): 205-213. | |
6 | YANO M, HARUSHIMA Y, NAGAMURA Y, et al.. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map [J]. Theor. Appl. Genet., 1997, 95(7): 1025-1032. |
7 | XUE W, XING Y, WENG X, et al.. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice [J]. Nat. Genet., 2008, 40(6): 761-767. |
8 | YAN W H, WANG P, CHEN H X, et al.. A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity, plant height, and heading date in rice [J]. Mol. Plant, 2011, 4(2): 319-330. |
9 | MICHELMORE R W, PARAN I, KESSELI R V. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc. Natl. Acad. Sci. USA, 1991, 88(21): 9828-9832. |
10 | 朱玉贤,李毅,郑晓峰,等.现代分子生物学 [M].北京:高等教育出版社,2019:1-304. |
11 | ZHENG Y, XU F, LI Q, et al.. QTL mapping combined with bulked segregant analysis identify SNP markers linked to leaf shape traits in Pisum sativum using SLAF sequencing [J/OL]. Front. Genet., 2018, 9: 615 [2024-05-24]. https:doi.org/10.3389/fgene.2018.00615. |
12 | 孙亚倩,陈士亮,褚佳豪,等.基于BSA-seq结合连锁分析发掘大豆荚粒性状QTLs及候选基因[J].中国农业科技导报,2023,25(7):29-42. |
SUN Y Q, CHEN S L, CHU J H, et al.. Mining of QTLs and candidate genes for pod and seed traits via combining BSA-seq and linkage mapping in soybean [J]. J. Agric. Sci. Technol., 2023, 25(7): 29-42. | |
13 | 宋夏夏,王利民,张建平,等.胡麻株高QTL定位与候选基因功能分析[J].中国农业科技导报,2020,22(6):26-32. |
SONG X X, WANG L M, ZHANG J P, et al.. QTL mapping and function analysis of candidate genes related to plant height in flax [J]. J. Agric. Sci. Technol., 2020, 22(6): 26-32. | |
14 | 王雪彬,张健,韦燕燕,等.基于BSA-seq的水稻籽粒耐陈化QTL定位分析[J].分子植物育种,2023,21(16):5337-5347. |
WANG X B, ZHANG J, WEI Y Y, et al.. QTLs mapping analysis of rice grain aging tolerance based on BSA-seq [J]. Mol. Plant Breed., 2023, 21(16): 5337-5347. | |
15 | 孙家臣,蒋辅燕,尹兴福,等.基于BSA的玉米花期相关性状基因定位[J].玉米科学,2023, 31(3):48-57. |
SUN J C, JIANG F Y, YIN X F, et al.. Gene mapping of maize flowering time related traits based on BSA [J]. J. Maize Sci., 2023,31(3):48-57. | |
16 | 吴元明,林佳怡,柳雨汐,等.基于BSA-seq和RNA-seq挖掘水稻株高相关QTL[J].生物技术通报, 2023,39(8):173-184. |
WU Y M, LIN J Y, LIU Y X, et al.. Identification of rice plant height associated QTL using BSA-seq and RNA-seq [J]. Biotechnol. Bull., 2023. 39(8): 173-184. | |
17 | 杨锟.水稻穗发芽和抽穗期的QTL定位[D].南京:南京农业大学, 2019. |
YANG K. Mapping of QTL for pre-harvest sprouting and heading date in rice (Oryza sativa L.) [D]. Nanjing:Nanjing Agricultural University, 2019. | |
18 | WANG C C, YU H, HUANG J, et al.. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0 [J]. Plant Biotechnol. J., 2020, 18(1): 14-16. |
19 | 吴心成,桂金鑫,刘瑫,等.水稻穗长全基因组关联分析[J/OL].分子植物育种,1-13[2024-05-22].. |
WU X C, GUI J X, LIU T, et al.. Genome-wide association study for panicle length in rice [J/OL]. Mol. Plant Breeding,2024: 1-13 [2024-05-22]. . | |
20 | TAKAGI H, ABE A, YOSHIDA K, et al.. QTL-seq: rapid mapping of quantitative trait loci in rice by whole genome resequencing of DNA from two bulked populations [J]. Plant J., 2013, 74(1): 174-183. |
21 | 蒋丹,洪广成,陈倩,等.水稻抽穗期分子调控研究进展[J].分子植物育种, 2019,17(21): 7071-7077. |
JIANG D, HONG G C, CHEN Q, et al.. Research progress in molecular regulation of heading date in rice (Oryza sativa) [J]. Mol. Plant Breeding, 2019, 17(21): 7071-7077. | |
22 | WAADT R, SELLER C A, HSU P-K, et al.. Plant hormone regulation of abiotic stress responses [J]. Nat. Rev. Mol. Cell Biol., 2022, 23(10): 680-694. |
23 | 闫晓峰,胡渊,黄晓龙,等.水稻抽穗期基因OsFKF1的克隆和互作蛋白筛选[J].南京农业大学学报,2023,46(3):429-437. |
YAN X F, HU Y, HUANG X L, et al.. Cloning of rice heading date gene OsFKF1 and screening of interacting proteins [J]. J. Nanjing Agric. Univ., 2023, 46(3):429-437. | |
24 | 曲丽君,张宏军,项超,等.杂交稻"大青棵"现象遗传基础剖析[J].中国水稻科学,2013,27(6):559-568. |
QU L J, ZHANG H J, XIANG C, Study on the genetic basis for abnormal heading in hybrid rice [J]. Chin. J. Rice Sci.,2013,27(6):559-568. | |
25 | JIAO Z L, ZHANG Q M, XU W J, et al..The putative obtusifoliol 14α-demethylase OsCYP51H3 affects multiple aspects of rice growth and development [J]. Physiol. Plant, 174(5), e13764. |
26 | YAMORI W, SAKATA N, SUZUKI Y, et al.. Cyclic electron flow around photosystem I via chloroplast NAD(P)H dehydrogenase (NDH) complex performs a significant physiological role during photosynthesis and plant growth at low temperature in rice [J]. Plant J., 2011, 68(6): 966-976. |
27 | ZHANG G Z, JIN S H, LI P, et al.. Ectopic expression of UGT84A2 delayed flowering by indole-3-butyric acid-mediated transcriptional repression of ARF6 and ARF8 genes in Arabidopsis [J]. Plant Cell Rep., 2017,36(12): 1995-2006. |
28 | 于安东,刘琳,龙瑞才,等.植物UDP-糖基转移酶(UGT)的功能及应用前景[J].植物生理学报,2022,58(4):631-642. |
YU A D, LIU L, LONG R C,et al..Function and application prospect of plant UDP-glycosyltransferase (UGT) [J]. Plant Physiol. J.,2022,58(4):631-642. | |
29 | HONG Y, ZHANG Y, SINUMPORN S, et al.. Premature leaf senescence 3, encoding a methyltransferase, is required for melatonin biosynthesis in rice [J]. Plant J., 2018, 95(5): 877-891. |
[1] | Liang SUN, Yi XU, Qin CAI, Jinghao GUO, Can ZHAO, Baowei GUO, Zhipeng XING, Zhongyang HUO, Hongcheng ZHANG, Yajie HU. Research Progress on Effects of Medium and Trace Elements on Yield and Quality of Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 9-19. |
[2] | Dawei LIU, Feng QIN, Qian LIAO, Xiushan WANG, Fangping XIE, Tiehui LI. Optimization and Experimental Study of Drying Process Parameters for Rice in Hot-air Drying [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 93-102. |
[3] | Wei YUE, Hui WANG, Xi CHEN, Xinchun ZHAN, Xinmin RUAN. Study on Comprehensive Evaluation Method of Rice Quality in Anhui Province [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 141-147. |
[4] | Jianguang ZENG, Taoli LIU, Linjuan SUN, Dingyang YUAN, Yubo HUANG, Chenzhong JIN, Yanning TAN. Analysis of Character and GibberellinSensitivity of Rice Dwarfism and Late-Heading Mutant d534 [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 7-14. |
[5] | Lin CHEN, Nanhui YU, Lizong WANG, Jijun FAN, Gang LEI, Xiaopeng LIU, Long ZHOU, Jin ZHOU. Measurement of Contact Parameters and Discrete Element Simulation Calibration of Rice Bran and Broken Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 127-136. |
[6] | Zhongyi LI, Hongqin TANG, Wenbin DONG, Caihui WEI, Tieguang HE. Effects of Co-incorporation of Rice Straw and Chinese Milk Vetch on Photosynthetic Characteristics, Yield and Quality of Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 171-180. |
[7] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[8] | Huijun LI, Weijian ZHANG, Weijian WU, Gaoyang LI, Yijie CHEN, Fengcheng HUANG, Yongxiang HUANG, Zhong LIN, Zhen ZHEN. Effects of Sea Rice on Soil Chemical Properties and Microbial Community Structure in Coastal Solonchaks [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 147-156. |
[9] | Jingjuan GAO, Chenyu ZHU, Yuqin KE, Chaoyuan ZHENG, Chunying LI, Wenqing LI. Effects of Organic Fertilizer Application Period on Carbon and Nitrogen Metabolism in Flue-cured Tobacco Under Tobacco-Rice Rotation [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 157-165. |
[10] | Shegang SHAO, Ting LI, Yong LIU, Lanwen LIN, Dong ZHANG, Dong NI, Junjie LI, Li’an ZHU. Effects of Exogenous Promoting Bacteria Agent on Decomposition Characteristics and Microbial Community Structure of Rice Straw [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 166-177. |
[11] | Lili SHAN. Effects of Low Temperature During Booting Stage on Rice Physiology and Alleviating Effect of Exogenous Melatonin [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 23-33. |
[12] | Ying ZHOU, Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU, Zhi DOU, Hui GAO. Effect of Melatonin Spraying on Rice Yield Formation and Lodging Resistance Under Rice-Crayfish Coculture Mode [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 34-42. |
[13] | Zhigang ZHENG, Li XIANG, Gongyi LIU, Cai XU, Bin QIN, Weiqin WANG, Huabin ZHENG, Qiyuan TANG. Effects of Nitrogen Application Rate and Density on Growth and Yield of Orderly Machine-thrown Early Rice [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 132-143. |
[14] | Yaqian SUN, Shiliang CHEN, Jiahao CHU, Xihuan LI, Caiying ZHANG. Mining of QTLs and Candidate Genes for Pod and Seed Traits via Combining BSA-seq and Linkage Mapping in Soybean [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 29-42. |
[15] | Dongmeng ZHANG, Dongping YAO, Jun WU, Qiuhong LUO, Wen ZHUANG, Xionglun LIU, Qiyun DENG, Bin BAI. Effect of Natural Low Temperature on Cooking and Eating Quality of Rice During Grain Filling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 144-153. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||