Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (8): 93-102.DOI: 10.13304/j.nykjdb.2022.1109
• INTELLIGENT AGRICULTURE & AGRICULTURAL MACHINERY • Previous Articles Next Articles
Dawei LIU1(), Feng QIN1, Qian LIAO2(
), Xiushan WANG1, Fangping XIE1, Tiehui LI3
Online:
2024-08-15
Published:
2024-08-12
Contact:
Qian LIAO
About author:
LIU Dawei E-mail:liudawei8361@163.com
Supported by:
刘大为1(), 秦锋1, 廖骞2(
), 王修善1, 谢方平1, 李铁辉3
通讯作者:
廖骞
CLC Number:
Dawei LIU, Feng QIN, Qian LIAO, Xiushan WANG, Fangping XIE, Tiehui LI. Optimization and Experimental Study of Drying Process Parameters for Rice in Hot-air Drying[J]. Journal of Agricultural Science and Technology, 2024, 26(8): 93-102.
刘大为, 秦锋, 廖骞, 王修善, 谢方平, 李铁辉. 南方籼稻热风干燥特性及其工艺参数优化[J]. 中国农业科技导报, 2024, 26(8): 93-102.
Level | A: Drying temperature/℃ | B: Proportion of tempering time | C: Initial moisture content/% |
---|---|---|---|
-1 | 45 | 0.670 | 22 |
0 | 50 | 0.735 | 24 |
1 | 55 | 0.800 | 26 |
Table 1 Experimental factors and levels
Level | A: Drying temperature/℃ | B: Proportion of tempering time | C: Initial moisture content/% |
---|---|---|---|
-1 | 45 | 0.670 | 22 |
0 | 50 | 0.735 | 24 |
1 | 55 | 0.800 | 26 |
Test group | Factor | Evaluation index | |||
---|---|---|---|---|---|
Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Explosive waist increase rate/% | |
1a | 45 | 0.735 | 26 | 0.015 43 | 1.4 |
2a | 45 | 0.735 | 22 | 0.014 01 | 1.8 |
3a | 45 | 0.670 | 24 | 0.017 13 | 2.2 |
4a | 45 | 0.800 | 24 | 0.013 83 | 1.8 |
5a | 50 | 0.670 | 26 | 0.023 01 | 3.2 |
6a | 50 | 0.800 | 22 | 0.013 96 | 2.0 |
7a | 50 | 0.800 | 26 | 0.016 84 | 1.6 |
8a | 50 | 0.735 | 24 | 0.017 60 | 3.0 |
9a | 50 | 0.670 | 22 | 0.020 60 | 4.6 |
10a | 50 | 0.735 | 24 | 0.017 47 | 2.8 |
11a | 50 | 0.735 | 24 | 0.017 92 | 2.4 |
12a | 50 | 0.735 | 24 | 0.017 85 | 2.6 |
13a | 50 | 0.735 | 24 | 0.017 39 | 2.6 |
14a | 55 | 0.735 | 22 | 0.025 37 | 5.6 |
15a | 55 | 0.670 | 24 | 0.031 80 | 6.2 |
16a | 55 | 0.735 | 26 | 0.026 53 | 5.2 |
17a | 55 | 0.800 | 24 | 0.021 91 | 4.8 |
Table 2 Experimental design and results of Zhongzao 35
Test group | Factor | Evaluation index | |||
---|---|---|---|---|---|
Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Explosive waist increase rate/% | |
1a | 45 | 0.735 | 26 | 0.015 43 | 1.4 |
2a | 45 | 0.735 | 22 | 0.014 01 | 1.8 |
3a | 45 | 0.670 | 24 | 0.017 13 | 2.2 |
4a | 45 | 0.800 | 24 | 0.013 83 | 1.8 |
5a | 50 | 0.670 | 26 | 0.023 01 | 3.2 |
6a | 50 | 0.800 | 22 | 0.013 96 | 2.0 |
7a | 50 | 0.800 | 26 | 0.016 84 | 1.6 |
8a | 50 | 0.735 | 24 | 0.017 60 | 3.0 |
9a | 50 | 0.670 | 22 | 0.020 60 | 4.6 |
10a | 50 | 0.735 | 24 | 0.017 47 | 2.8 |
11a | 50 | 0.735 | 24 | 0.017 92 | 2.4 |
12a | 50 | 0.735 | 24 | 0.017 85 | 2.6 |
13a | 50 | 0.735 | 24 | 0.017 39 | 2.6 |
14a | 55 | 0.735 | 22 | 0.025 37 | 5.6 |
15a | 55 | 0.670 | 24 | 0.031 80 | 6.2 |
16a | 55 | 0.735 | 26 | 0.026 53 | 5.2 |
17a | 55 | 0.800 | 24 | 0.021 91 | 4.8 |
Test group | Factor | Evaluation index | |||
---|---|---|---|---|---|
Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Additional crack percentage /% | |
1b | 45 | 0.735 | 26 | 0.023 07 | 2.6 |
2b | 45 | 0.735 | 22 | 0.021 23 | 3.2 |
3b | 45 | 0.670 | 24 | 0.025 74 | 3.6 |
4b | 45 | 0.800 | 24 | 0.019 61 | 2.2 |
5b | 50 | 0.670 | 26 | 0.030 24 | 4.6 |
6b | 50 | 0.800 | 22 | 0.020 88 | 3.2 |
7b | 50 | 0.800 | 26 | 0.023 00 | 2.6 |
8b | 50 | 0.735 | 24 | 0.026 93 | 4.2 |
9b | 50 | 0.670 | 22 | 0.035 96 | 6.0 |
10b | 50 | 0.735 | 24 | 0.026 60 | 4.4 |
11b | 50 | 0.735 | 24 | 0.027 26 | 3.6 |
12b | 50 | 0.735 | 24 | 0.025 71 | 4.0 |
13b | 50 | 0.735 | 24 | 0.026 21 | 3.8 |
14b | 55 | 0.735 | 22 | 0.044 76 | 6.8 |
15b | 55 | 0.670 | 24 | 0.052 95 | 7.4 |
16b | 55 | 0.735 | 26 | 0.037 37 | 6.4 |
17b | 55 | 0.800 | 24 | 0.032 26 | 6.2 |
Table 3 Experimental design and results of Yuzhenxiang
Test group | Factor | Evaluation index | |||
---|---|---|---|---|---|
Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) | Additional crack percentage /% | |
1b | 45 | 0.735 | 26 | 0.023 07 | 2.6 |
2b | 45 | 0.735 | 22 | 0.021 23 | 3.2 |
3b | 45 | 0.670 | 24 | 0.025 74 | 3.6 |
4b | 45 | 0.800 | 24 | 0.019 61 | 2.2 |
5b | 50 | 0.670 | 26 | 0.030 24 | 4.6 |
6b | 50 | 0.800 | 22 | 0.020 88 | 3.2 |
7b | 50 | 0.800 | 26 | 0.023 00 | 2.6 |
8b | 50 | 0.735 | 24 | 0.026 93 | 4.2 |
9b | 50 | 0.670 | 22 | 0.035 96 | 6.0 |
10b | 50 | 0.735 | 24 | 0.026 60 | 4.4 |
11b | 50 | 0.735 | 24 | 0.027 26 | 3.6 |
12b | 50 | 0.735 | 24 | 0.025 71 | 4.0 |
13b | 50 | 0.735 | 24 | 0.026 21 | 3.8 |
14b | 55 | 0.735 | 22 | 0.044 76 | 6.8 |
15b | 55 | 0.670 | 24 | 0.052 95 | 7.4 |
16b | 55 | 0.735 | 26 | 0.037 37 | 6.4 |
17b | 55 | 0.800 | 24 | 0.032 26 | 6.2 |
Variety | Index | Variation source | F value | P value |
---|---|---|---|---|
a: Zhongzao 35 | Drying rate (Y1a) | Model | 259.47 | <0.000 1** |
Lack of fit | 5.96 | 0.058 7 | ||
Drying temperature (A) | 1 518.35 | <0.000 1** | ||
Proportion of tempering time (B) | 504.10 | <0.000 1** | ||
Initial moisture content (C) | 46.36 | 0.000 3** | ||
Additional crack percentage (Y2a) | Model | 40.28 | <0.000 1** | |
Lack of fit | 3.4 | 0.134 1 | ||
Drying temperature (A) | 273.93 | <0.000 1** | ||
Proportion of tempering time (B) | 51.65 | 0.000 2** | ||
Initial moisture content (C) | 8.01 | 0.025 4* | ||
b: Yuzhenxiang | Drying rate (Y1b) | Model | 198.26 | <0.000 1** |
Lack of fit | 3.19 | 0.145 9 | ||
Drying temperature (A) | 1 057.62 | <0.000 1** | ||
Proportion of tempering time (B) | 423.12 | <0.000 1** | ||
Initial moisture content (C) | 14.67 | 0.006 5** | ||
Additional crack percentage (Y2b) | Model | 26.71 | 0.000 1** | |
Lack of fit | 2.5 | 0.198 5 | ||
Drying temperature(A) | 175.79 | <0.000 1** | ||
Proportion of tempering time (B) | 41.67 | 0.000 3** | ||
Initial moisture content (C) | 6.85 | 0.034 6* |
Table 4 Analysis of variance of regression model
Variety | Index | Variation source | F value | P value |
---|---|---|---|---|
a: Zhongzao 35 | Drying rate (Y1a) | Model | 259.47 | <0.000 1** |
Lack of fit | 5.96 | 0.058 7 | ||
Drying temperature (A) | 1 518.35 | <0.000 1** | ||
Proportion of tempering time (B) | 504.10 | <0.000 1** | ||
Initial moisture content (C) | 46.36 | 0.000 3** | ||
Additional crack percentage (Y2a) | Model | 40.28 | <0.000 1** | |
Lack of fit | 3.4 | 0.134 1 | ||
Drying temperature (A) | 273.93 | <0.000 1** | ||
Proportion of tempering time (B) | 51.65 | 0.000 2** | ||
Initial moisture content (C) | 8.01 | 0.025 4* | ||
b: Yuzhenxiang | Drying rate (Y1b) | Model | 198.26 | <0.000 1** |
Lack of fit | 3.19 | 0.145 9 | ||
Drying temperature (A) | 1 057.62 | <0.000 1** | ||
Proportion of tempering time (B) | 423.12 | <0.000 1** | ||
Initial moisture content (C) | 14.67 | 0.006 5** | ||
Additional crack percentage (Y2b) | Model | 26.71 | 0.000 1** | |
Lack of fit | 2.5 | 0.198 5 | ||
Drying temperature(A) | 175.79 | <0.000 1** | ||
Proportion of tempering time (B) | 41.67 | 0.000 3** | ||
Initial moisture content (C) | 6.85 | 0.034 6* |
Variety | Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) |
---|---|---|---|---|
Zhongzao 35 | 49.48 | 0.670 | 26 | 0.022 00 |
Yuzhenxiang | 45.00 | 0.698 | 26 | 0.024 00 |
Table 5 Table of optimized parameter combination
Variety | Drying temperature /℃ | Proportion of tempering time | Initial moisture content/% | Drying rate/(%·min-1) |
---|---|---|---|---|
Zhongzao 35 | 49.48 | 0.670 | 26 | 0.022 00 |
Yuzhenxiang | 45.00 | 0.698 | 26 | 0.024 00 |
No. | Zhongzao 35 | Yuzhenxiang | ||
---|---|---|---|---|
Drying rate /(%·min-1) | Additional crack percentage/% | Drying rate /(%·min-1) | Additional crack percentage/% | |
1 | 0.023 14 | 3.00 | 0.024 57 | 2.60 |
2 | 0.022 18 | 2.80 | 0.025 18 | 3.20 |
3 | 0.023 08 | 2.80 | 0.024 08 | 2.60 |
Average value | 0.022 80 | 2.87 | 0.024 61 | 2.80 |
Table 6 Experimental results of optimized parameter combinations
No. | Zhongzao 35 | Yuzhenxiang | ||
---|---|---|---|---|
Drying rate /(%·min-1) | Additional crack percentage/% | Drying rate /(%·min-1) | Additional crack percentage/% | |
1 | 0.023 14 | 3.00 | 0.024 57 | 2.60 |
2 | 0.022 18 | 2.80 | 0.025 18 | 3.20 |
3 | 0.023 08 | 2.80 | 0.024 08 | 2.60 |
Average value | 0.022 80 | 2.87 | 0.024 61 | 2.80 |
1 | ISLAM M, NASRIN T, ISLAM M, et al.. Investigation on appropriate two‐stage drying techniques for quality rice seeds [J/OL]. J. Food Process Eng., 2021,44(6), e13690 [2023-12-13]. . |
2 | PROCTOR D J. Grain storage techniques: evolution and trends in developing countries [R]. FAO Agricultural Services Bulletin,1995: No.109. |
3 | CNOSSEN A G, SIEBENMORGEN T J, YANG W, et al.. An application of glass transition temperature to explain rice kernel fissure occurrence during the drying process [J]. Drying Technol., 2001,19(8), 1661-1682. |
4 | ELBERT G, TOLABA M P, SUÁREZ C. Effects of drying conditions on head rice yield and browning index of parboiled rice [J]. J. Food Process Eng., 2001,47(1), 37-41. |
5 | GOLMOHAMMADI M, ASSAR M, RAJABI-HAMANEH M, et al.. Energy efficiency investigation of intermittent rice rice dryer: Modeling and experimental study [J]. Food Bioprod. Process., 2015,94: 275-283. |
6 | POOMSA-AD N, SOPONRONNARIT S, PRACHAYAWARAKORN S. Effect of tempering on subsequent drying of rice using fluidisation technique [J]. Drying Technol., 2002, 20(1): 195-210. |
7 | ZHANG Q, LITCHFIELD J B. An optimization of intermittent corn drying in a laboratory scale thin layer dryer [J]. Drying Technol., 1991,9(2), 383-395. |
8 | LIU M H, WU Y H, ZENG Y F, et al.. Fissure formation in rice kernel based on glass transition theory [J]. Trans. Chin. Soc. Agric. Eng., 2004(1), 30-34. |
9 | NGP P, LAWC L, TASIRINS M, et al.. Drying characteristics of Malaysian rice: kinetics & grain cracking quality [J]. Drying Technol., 2005,23 (12), 2477-2489. |
10 | DING C, KHIR R, PAN Z, et al.. Influence of infrared drying on storage characteristics of brown rice [J]. Food Chem., 2018, 264: 149-156. |
11 | JIN Y, WONG K W, WU Z, et al.. Relationship between accumulated temperature and quality of rice [J]. Int. J. Food Prop., 2019,22(1), 19-33. |
12 | BOOTKOTE P, SOPONRONNARIT S, PRACHAYAWARAKORN S. Process of producing parboiled rice with different colors by fluidized bed drying technique including tempering [J]. Food Bioprocess. Technol., 2016, 9(9): 1574-1586. |
13 | PRUENGAM P, SOPONRONNARIT S, PRACHAYAWARAKORN S, et al.. Rapid drying of parboiled rice using hot air impinging stream dryer [J]. Drying Technol., 2014,32(13/16), 1949-1955. |
14 | FOROUGHI-DAHR M, GOLMOHAMMADI M, POURJAMSHIDIAN R, et al.. On the characteristics of thin-layer drying models for intermittent drying of rough rice [J]. Chem. Eng. Commun., 2015, 202(8): 1024-1035. |
15 | MIDILLI A, KUCUK H, YAPAR Z. A new model for single-layer drying [J]. Drying Technol., 2002,20(7), 1503-1513. |
16 | YANG Z Y, ZHAO YANG, FEI YU, et al.. Ultrasound‐assisted heat pump intermittent drying of adzuki bean seeds: drying characteristics and parameter optimization [J]. J. Food Process Eng., 2020,43(10): e13501 [2023-12-13]. . |
17 | GOLMOHAMMADI M, ASSAR M, RAJABI-HAMANEH M, et al.. Energy efficiency investigation of intermittent rice rice dryer: modeling and experimental study [J]. Food Bioproducts Process., 2015,94, 275-283. |
18 | GRAHAM‐ACQUAAH S, SIEBENMORGEN T J. Rice paste viscosities and gel texture resulting from varying drying and tempering regimen [J]. Cereal Chem., 2021,98(2): 285-295. |
19 | WANG D Y, WANG J, QIU S, et al.. Optimization and test of process parameters for hot air drying and retardation of rice [J]. J. Agric. Eng., 2021, 37(17):285-292. |
20 | WU Z H, LIU B, WANG D, et al.. Research on the drying and slow-suffering characteristics of rice grain and crack generation law [J]. J. Agric. Mach., 2018, 49(5):368-374. |
21 | TANG R M, LONG L Y, ZHU Z G, et al.. High quality rice: [S]. Beijing: China Standard Press, 2017. |
22 | GAO X W, YANG H R, WU Y S, et al. Grain, oilseed, yellow rice grain and cracked grain Test Method [S]. Beijing: China National Standard Press, 1986. |
23 | National Health and Family Planning Commission of People’s Republic of China. National standard for food safety Determination of moisture in food: [S]. Beijing: China Standard Press, 2016. |
[1] | Liang SUN, Yi XU, Qin CAI, Jinghao GUO, Can ZHAO, Baowei GUO, Zhipeng XING, Zhongyang HUO, Hongcheng ZHANG, Yajie HU. Research Progress on Effects of Medium and Trace Elements on Yield and Quality of Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(8): 9-19. |
[2] | Wei YUE, Hui WANG, Xi CHEN, Xinchun ZHAN, Xinmin RUAN. Study on Comprehensive Evaluation Method of Rice Quality in Anhui Province [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 141-147. |
[3] | Jianguang ZENG, Taoli LIU, Linjuan SUN, Dingyang YUAN, Yubo HUANG, Chenzhong JIN, Yanning TAN. Analysis of Character and GibberellinSensitivity of Rice Dwarfism and Late-Heading Mutant d534 [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 7-14. |
[4] | Lin CHEN, Nanhui YU, Lizong WANG, Jijun FAN, Gang LEI, Xiaopeng LIU, Long ZHOU, Jin ZHOU. Measurement of Contact Parameters and Discrete Element Simulation Calibration of Rice Bran and Broken Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 127-136. |
[5] | Zhongyi LI, Hongqin TANG, Wenbin DONG, Caihui WEI, Tieguang HE. Effects of Co-incorporation of Rice Straw and Chinese Milk Vetch on Photosynthetic Characteristics, Yield and Quality of Rice [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 171-180. |
[6] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[7] | Huijun LI, Weijian ZHANG, Weijian WU, Gaoyang LI, Yijie CHEN, Fengcheng HUANG, Yongxiang HUANG, Zhong LIN, Zhen ZHEN. Effects of Sea Rice on Soil Chemical Properties and Microbial Community Structure in Coastal Solonchaks [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 147-156. |
[8] | Jingjuan GAO, Chenyu ZHU, Yuqin KE, Chaoyuan ZHENG, Chunying LI, Wenqing LI. Effects of Organic Fertilizer Application Period on Carbon and Nitrogen Metabolism in Flue-cured Tobacco Under Tobacco-Rice Rotation [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 157-165. |
[9] | Shegang SHAO, Ting LI, Yong LIU, Lanwen LIN, Dong ZHANG, Dong NI, Junjie LI, Li’an ZHU. Effects of Exogenous Promoting Bacteria Agent on Decomposition Characteristics and Microbial Community Structure of Rice Straw [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 166-177. |
[10] | Lili SHAN. Effects of Low Temperature During Booting Stage on Rice Physiology and Alleviating Effect of Exogenous Melatonin [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 23-33. |
[11] | Ying ZHOU, Jingyong LI, Linxiu DAI, Dicai AO, Ziyi LI, Fan YANG, Junwei GU, Qiang XU, Zhi DOU, Hui GAO. Effect of Melatonin Spraying on Rice Yield Formation and Lodging Resistance Under Rice-Crayfish Coculture Mode [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 34-42. |
[12] | Yaqiang HU, Ya YUAN, Luwei YANG, Xuelai ZHANG, Shaopeng QIU, Xinyao YU. Study on Hot Air Drying System for Implantable Alfalfa Bales [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 105-112. |
[13] | Zhigang ZHENG, Li XIANG, Gongyi LIU, Cai XU, Bin QIN, Weiqin WANG, Huabin ZHENG, Qiyuan TANG. Effects of Nitrogen Application Rate and Density on Growth and Yield of Orderly Machine-thrown Early Rice [J]. Journal of Agricultural Science and Technology, 2023, 25(7): 132-143. |
[14] | Dongmeng ZHANG, Dongping YAO, Jun WU, Qiuhong LUO, Wen ZHUANG, Xionglun LIU, Qiyun DENG, Bin BAI. Effect of Natural Low Temperature on Cooking and Eating Quality of Rice During Grain Filling Stage [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 144-153. |
[15] | Yilin YANG, Junxiong DING, Xiaohua WU, Peng WANG, Dongliang SUN, Xinyao YU, Zhentao ZHANG, Dong LI. Optimization of Hot-air Drying Process Parameters of Lentinus edodes Based on Response Surface [J]. Journal of Agricultural Science and Technology, 2023, 25(6): 154-164. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||