Journal of Agricultural Science and Technology ›› 2024, Vol. 26 ›› Issue (11): 66-78.DOI: 10.13304/j.nykjdb.2023.0426
• BIOTECHNOLOGY & LIFE SCIENCE • Previous Articles Next Articles
Huabing LIU1(), Wei DANG2, Qi LI1, Xiaobing ZHANG1, Zhiqiang XU1, Yongjian ZHONG1, Zhiguang REN1, Yonggang ZHANG1, Kailong YUAN1, Hao YANG1, Hui WANG1(
), Jutao SUN2(
)
Received:
2023-06-02
Accepted:
2023-11-07
Online:
2024-11-15
Published:
2024-11-19
Contact:
Hui WANG,Jutao SUN
刘化冰1(), 党伟2, 李奇1, 张晓兵1, 徐志强1, 钟永健1, 任志广1, 张勇刚1, 袁凯龙1, 杨浩1, 王辉1(
), 孙聚涛2(
)
通讯作者:
王辉,孙聚涛
作者简介:
刘化冰E-mail:liuhuabing@zjtobacco.com
基金资助:
CLC Number:
Huabing LIU, Wei DANG, Qi LI, Xiaobing ZHANG, Zhiqiang XU, Yongjian ZHONG, Zhiguang REN, Yonggang ZHANG, Kailong YUAN, Hao YANG, Hui WANG, Jutao SUN. Study on Differences in Nitrogen Absorption and Assimilation among Tobacco Varieties[J]. Journal of Agricultural Science and Technology, 2024, 26(11): 66-78.
刘化冰, 党伟, 李奇, 张晓兵, 徐志强, 钟永健, 任志广, 张勇刚, 袁凯龙, 杨浩, 王辉, 孙聚涛. 烟草品种间氮素吸收和同化差异研究[J]. 中国农业科技导报, 2024, 26(11): 66-78.
基因名称 Gene name | 基因ID Gene ID | 引物序列 Primer sequence (5’-3’) |
---|---|---|
NtActin | LOC107809070 | F:TACTTACTGAACGACCCTTGAATCC |
R:GATCACGAGCAGCAAGATCCAAC | ||
NtNRT1.1 | LOC107792216 | F:CCACTATTCAAGCCATGGGTGTT |
R:GCGCCGTCATGTATAGTGCT | ||
NtNRT1.2 | LOC107814217 | F:GGTATCTTTGCCACTGTTCA |
R:CAGCATCGTCGAATTGGTCG | ||
NtNRT2.1 | LOC107808057 | F:CTATTGGTGCTCAAGCTGCA |
R:CGTGAAGAACAACAGTTGT | ||
NtNRT2.3 | LOC107818120 | F:TTTTGGGGTTGAACTCACTGT |
R:CTTCCCCTCATTCCGAACCTT | ||
NtNIA1 | LOC107823732 | F:CGGTGGTTCTGACAGCATTC |
R:CCTGAATTCCTCCAATAGCTTCT | ||
NtNIA2 | LOC107785409 | F:TGGTGGGACTGACAGCATTC |
R:AATCCTGAAATCCTCCAAGAGC | ||
NtGS1 | LOC107777858 | F:TACTCCTGCTGGCGAGCCT |
R:CTCCAATAGGCCACGCTAGA | ||
NtGS2 | LOC107802035 | F:GATCGGAGGATCTGGAATTGA |
R:TGTCTTCTCCAGGTGCTTGTC |
Table 1 qRT-PCR primer sequence of nitrogen metabolism related genes
基因名称 Gene name | 基因ID Gene ID | 引物序列 Primer sequence (5’-3’) |
---|---|---|
NtActin | LOC107809070 | F:TACTTACTGAACGACCCTTGAATCC |
R:GATCACGAGCAGCAAGATCCAAC | ||
NtNRT1.1 | LOC107792216 | F:CCACTATTCAAGCCATGGGTGTT |
R:GCGCCGTCATGTATAGTGCT | ||
NtNRT1.2 | LOC107814217 | F:GGTATCTTTGCCACTGTTCA |
R:CAGCATCGTCGAATTGGTCG | ||
NtNRT2.1 | LOC107808057 | F:CTATTGGTGCTCAAGCTGCA |
R:CGTGAAGAACAACAGTTGT | ||
NtNRT2.3 | LOC107818120 | F:TTTTGGGGTTGAACTCACTGT |
R:CTTCCCCTCATTCCGAACCTT | ||
NtNIA1 | LOC107823732 | F:CGGTGGTTCTGACAGCATTC |
R:CCTGAATTCCTCCAATAGCTTCT | ||
NtNIA2 | LOC107785409 | F:TGGTGGGACTGACAGCATTC |
R:AATCCTGAAATCCTCCAAGAGC | ||
NtGS1 | LOC107777858 | F:TACTCCTGCTGGCGAGCCT |
R:CTCCAATAGGCCACGCTAGA | ||
NtGS2 | LOC107802035 | F:GATCGGAGGATCTGGAATTGA |
R:TGTCTTCTCCAGGTGCTTGTC |
Fig. 1 Expression of NtNRT1/2 gene in roots among different tobacco varietiesNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
Fig. 2 Expression levels of key nitrogen metabolism genes in leaves among different tobacco varietiesNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
Fig. 3 NR and GS activity columns in leaves of NC89 and ZY100 under different nitrogen conditionsNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
Fig. 4 NO3- content in roots and leaves of NC89 and ZY100 under different nitrogen conditionsNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
Fig. 5 Total chlorophyll content in leaves of NC89 and ZY100 under different nitrogen conditionsNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
Fig. 6 Soluble protein content in leaves of NC89 and ZY100 under different nitrogen conditionsNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
品种 Cultivar | 氮水平 Nitrogen level | 总根长 Total root length/mm | 根系体积 Root volume/mm3 | 根系总表面积 Total surface area of roots/mm2 | 根系平均直径 Roots average diameter/ mm | 根尖数 Root tips number |
---|---|---|---|---|---|---|
NC89 | T1 | 7 281.05±114.15 bB | 70 455.77±14 635.79 aA | 46 288.83±5 255.66 aA | 1.91±0.19 aA | 1 321.00±104.50 bB |
T2 | 13 605.20±1 110.82 aA | 30 757.71±12 054.50 bAB | 43 053.53±6 187.31 aA | 0.96±0.16 bB | 2 444.00±32.33 aA | |
ZY100 | T1 | 2 275.97±799.99 cB | 9 660.89±5 921.07 bB | 9 216.48±4 279.77 bB | 1.19±0.18 bAB | 626.33±113.35 cB |
T2 | 3 812.00±688.29 bcB | 1 926.73±637.76 cB | 6 017.40±1 295.37 bB | 0.49±0.05 cB | 1 210.33±268.77 bB |
Table 2 Root morphological indexes of NC89 and ZY100 under different nitrogen levels
品种 Cultivar | 氮水平 Nitrogen level | 总根长 Total root length/mm | 根系体积 Root volume/mm3 | 根系总表面积 Total surface area of roots/mm2 | 根系平均直径 Roots average diameter/ mm | 根尖数 Root tips number |
---|---|---|---|---|---|---|
NC89 | T1 | 7 281.05±114.15 bB | 70 455.77±14 635.79 aA | 46 288.83±5 255.66 aA | 1.91±0.19 aA | 1 321.00±104.50 bB |
T2 | 13 605.20±1 110.82 aA | 30 757.71±12 054.50 bAB | 43 053.53±6 187.31 aA | 0.96±0.16 bB | 2 444.00±32.33 aA | |
ZY100 | T1 | 2 275.97±799.99 cB | 9 660.89±5 921.07 bB | 9 216.48±4 279.77 bB | 1.19±0.18 bAB | 626.33±113.35 cB |
T2 | 3 812.00±688.29 bcB | 1 926.73±637.76 cB | 6 017.40±1 295.37 bB | 0.49±0.05 cB | 1 210.33±268.77 bB |
Fig. 7 Dry matter weight and root-shoot ratio of underground and aboveground parts of NC89 and ZY100 under differen nitrogen conditionsNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
Fig. 8 C/N in underground and aboveground parts of NC89 and ZY100 under differen nitrogen conditionsNote:Different uppercase and lowercase letters indicate significant differences between different treatments of different varieties at P<0.01 and P<0.05 levels, respectively.
品种 Variety | 氮水平 Nitrogen lever | 植物氮素积累量 Total nitrogen accumulation/ (mg·plant-1) | 植物碳素积累量 Total carbon accumulation/ (mg·plant-1) | 不同部位氮素积累量 Nitrogen accumulation in different parts/(mg·plant-1) | 不同部位碳素积累量 Carbon accumulation in different parts/(mg·plant-1) | 不同部位氮素分配比例 Nitrogen distribution ratios in different parts/% | 不同部位碳素分配比例 Carbon distribution ratios in different parts/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
地下部 Underground part | 地上部 Aboveground part | 地下部 Underground part | 地上部 Aboveground part | 地下部 Underground part | 地上部 Aboveground part | 地下部 Underground part | 地上部 Aboveground part | ||||
NC89 | T1 | 162.11±11.47 aA | 1 003.48±73.69 aA | 11.83±0.61 aA | 150.28±11.85 aA | 96.62±5.22 bAB | 906.85±72.29 aA | 7.33±0.84 bB | 92.67±0.84 aA | 9.66±0.77 cB | 90.34±0.77 aA |
T2 | 47.11±9.56 cC | 623.31±119.29 bB | 9.19±2.05 bAB | 37.92±8.15 cC | 149.7±33.45 aA | 473.61±98.4 cB | 19.66±3.02 aA | 80.34±3.02 bB | 24.17±3.80 aA | 75.83±3.80 cB | |
ZY100 | T1 | 107.52±27.97 bB | 778.14±101.15 bAB | 8.03±0.72 bAB | 99.49±28.67 bB | 73.14±7.88 bB | 704.99±107.75 bAB | 7.91±2.62 bB | 92.09±2.62 aA | 9.57±2.05 cB | 90.43±2.05 aA |
T2 | 43.41±9.7 cC | 613.01±87.74 bB | 7.02±1.44 bB | 36.39±8.93 cC | 99.54±22.5 bAB | 513.47±75.29 cB | 16.40±2.83 aA | 83.60±2.83 bB | 16.22±2.66 bB | 83.78±2.66 bA |
Table 3 Accumulation and distribution of carbon and nitrogen in seedling stage of NC89 and ZY100 under differen nitrogen conditions
品种 Variety | 氮水平 Nitrogen lever | 植物氮素积累量 Total nitrogen accumulation/ (mg·plant-1) | 植物碳素积累量 Total carbon accumulation/ (mg·plant-1) | 不同部位氮素积累量 Nitrogen accumulation in different parts/(mg·plant-1) | 不同部位碳素积累量 Carbon accumulation in different parts/(mg·plant-1) | 不同部位氮素分配比例 Nitrogen distribution ratios in different parts/% | 不同部位碳素分配比例 Carbon distribution ratios in different parts/% | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
地下部 Underground part | 地上部 Aboveground part | 地下部 Underground part | 地上部 Aboveground part | 地下部 Underground part | 地上部 Aboveground part | 地下部 Underground part | 地上部 Aboveground part | ||||
NC89 | T1 | 162.11±11.47 aA | 1 003.48±73.69 aA | 11.83±0.61 aA | 150.28±11.85 aA | 96.62±5.22 bAB | 906.85±72.29 aA | 7.33±0.84 bB | 92.67±0.84 aA | 9.66±0.77 cB | 90.34±0.77 aA |
T2 | 47.11±9.56 cC | 623.31±119.29 bB | 9.19±2.05 bAB | 37.92±8.15 cC | 149.7±33.45 aA | 473.61±98.4 cB | 19.66±3.02 aA | 80.34±3.02 bB | 24.17±3.80 aA | 75.83±3.80 cB | |
ZY100 | T1 | 107.52±27.97 bB | 778.14±101.15 bAB | 8.03±0.72 bAB | 99.49±28.67 bB | 73.14±7.88 bB | 704.99±107.75 bAB | 7.91±2.62 bB | 92.09±2.62 aA | 9.57±2.05 cB | 90.43±2.05 aA |
T2 | 43.41±9.7 cC | 613.01±87.74 bB | 7.02±1.44 bB | 36.39±8.93 cC | 99.54±22.5 bAB | 513.47±75.29 cB | 16.40±2.83 aA | 83.60±2.83 bB | 16.22±2.66 bB | 83.78±2.66 bA |
1 | 张玉磊.水稻分蘖形成的内外调控机制研究[D].哈尔滨:东北农业大学,2017. |
ZHANG Y L. The studies on the internal and external control mechanism of tiller formation in rice [D]. Haerbin: Northeast Agricultural University, 2017. | |
2 | XUAN W, BEECKMAN T, XU G H.Plant nitrogen nutrition:sensing and signaling [J]. Curr. Opin. Plant Biol., 2017,39:57-65. |
3 | 张振华.作物硝态氮转运利用与氮素利用效率的关系[J].植物营养与肥料学报,2017,23(1):217-223. |
ZHANG Z H. The relationship between nitrate transport and utilization in crop and nitrogen utilization efficiency [J]. J. Plant Nutr. Fert., 2017,23(1):217-223. | |
4 | 王新超,杨亚军,陈亮,等.茶树氮素利用效率相关生理生化指标初探[J].作物学报,2005,31(7):926-931. |
WANG X C, YANG Y J, CHEN L,et al..Preliminary study on physiological and biochemical indices related to nitrogen use efficiency in tea plant [Camellia sinensis (L.) O.kuntze] [J]. Acta Agron. Sin., 2005,31(7):926-931. | |
5 | 周健飞,武云杰,薛刚,等.南阳烟区施氮量对烤烟品种GS同工酶及氮代谢指标的影响[J].中国农业科技导报,2018,20(11):44-53. |
ZHOU J F, WU Y J, XUE G,et al.. Effects of nitrogen application on glutamine synthetase isozymes and nitrogen metabolism of flue-cured tobacco in Nanyang tobacco-growing areas [J]. J. Agric. Sci. Technol., 2018,20(11):44-53. | |
6 | 周健飞,武云杰,薛刚,等.烟叶成熟期氮代谢酶活性、基因表达与烤烟氮素利用效率的关系[J].植物营养与肥料学报,2018,24(3):625-632. |
ZHOU J F, WU Y J, XUE G, et al.. Relationship between nitrogen metabolic enzyme activity,gene expression and nitrogen use efficiency of flue-cured tobacco in maturing stage [J]. J. Plant Nutr. Fert., 2018,24(3):625-632. | |
7 | 魏星,武云杰,阚洪赢,等.不同烤烟品种烟叶衰老特性与内源激素的关系[J].烟草科技,2020,53(2):1-7. |
WEI X, WU Y J, KAN H Y,et al.. Leaf senescence characteristics and their relationships with endogenous hormones in different flue-cured tobacco varieties [J]. Tob. Sci.Technol., 2020,53(2):1-7. | |
8 | 莫志琴,张小全,武云杰,等.施氮量对驻马店不同烤烟品种化学成分和香气物质的影响[J].江西农业学报,2012,24(9):88-91. |
MO Z Q, ZHANG X Q, WU Y J,et al..Effects of nitrogen application rate on chemical components and aroma substances of different flue-cured tobacco varieties in Zhumadian [J]. Acta Agric. Jiangxi, 2012,24(9):88-91. | |
9 | LIU L H, FAN T F, SHI D X, et al.. Coding-sequence identification and transcriptional profiling of nine AMTs and four NRTs from tobacco revealed their differential regulation by developmental stages, nitrogen nutrition,and photoperiod [J/OL]. Front. Plant Sci., 2018, 9:210 [2023-05-06]. . |
10 | LIVAK K J, SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the2-△△CT method [J]. Methods, 2001,25(4):402-408. |
11 | 陈建勋,王晓峰.植物生理学实验指导[M].2版.广州:华南理工大学出版社,2006:1-100. |
12 | 昌梦雨,魏晓楠,王秋悦,等.植物叶绿素含量不同提取方法的比较研究[J].中国农学通报,2016,32(27):177-180. |
CHANG M Y, WEI X N, WANG Q Y, et al.. A comparative study on different extraction methods for plant chlorophyll [J]. Chin. Agric. Sci. Bull., 2016,32(27):177-180. | |
13 | 李猛,马庆,王慧,等.基于相对叶绿素含量的玉米自交系氮敏感性鉴定与评价[J].植物遗传资源学报,2015,16(6):1264-1271. |
LI M, MA Q, WANG H, et al.. Characterization and evaluation of sensitivity to nitrogen input across maize inbreds based on the relative chlorophyll content [J]. J. Plant Genet. Resour., 2015,16(6):1264-1271. | |
14 | PATTERSON T G, MOSS D N, BRUN W A. Enzymatic changes during the senescence of field-grown wheat [J]. Crop Sci., 1980, 20(1): 15-18. |
15 | 杨振芳,孟瑶,顾万荣,等.化控和密度措施对东北春玉米叶片衰老及产量的影响[J].华北农学报,2015,30(4):117-125. |
YANG Z F, MENG Y, GU W R,et al..Effect of chemical regulation and density on spring maize leaf senescence and yield in Northeast China [J]. Acta Agric.Boreali-Sin.,2015,30(4):117-125. | |
16 | 梁太波,王高杰,张艳玲,等.不同氮效率烟草品种氮素营养特性的差异[J].烟草科技,2013,46(12):63-66. |
LIANG T B, WANG G J, ZHANG Y L, et al.. Differential analysis of nitrogen nutrition characteristics between tobacco cultivars of different nitrogen utilization [J]. Tob. Sci. Technol., 2013,46(12):63-66. | |
17 | 周健飞,武云杰,薛刚,等.烤烟成熟期烟叶GS同工酶活性与氮素运转的关系[J].作物学报,2019,45(1):111-117. |
ZHOU J F, WU Y J, XUE G, et al.. Relationship between GS isoenzyme activity and nitrogen transportation in flue-cured tobacco leaves [J]. Acta Agron. Sin., 2019,45(1):111-117. | |
18 | ORSEL M, CHOPIN F, LELEU O,et al..Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis.physiology and protein-protein interaction [J]. Plant Physiol., 2006,142(3):1304-1317. |
19 | 唐仲.水稻高亲和硝酸盐转运蛋白基因OsNRT2.3a/B生物学功能分析[D].南京:南京农业大学,2012. |
TANG Z. Function analyses of high affinity nitrate transporter gene OsNRT2.3a/b in rice [D]. Nanjing: Nanjing Agricultural University, 2012. | |
20 | FU Y L, YI H Y, BAO J, et al.. LeNRT2.3 functions in nitrate acquisition and long-distance transport in tomato [J]. FEBS Lett., 2015,589(10):1072-1079. |
21 | TANG Z, FAN X, LI Q, et al.. Knockdown of a rice stelar nitrate transporter alters long-distance translocation but not root influx[J]. Plant Physiol., 2012,160(4):2052-2063. |
22 | 贾宏昉,张洪映,刘维智,等.高等植物硝酸盐转运蛋白的功能及其调控机制[J].生物技术通报,2014(6):14-21. |
JIA H F, ZHANG H Y, LIU W Z, et al.. Function and regulation mechanisms of nitrate transporters in higher plants [J]. Biotechnol. Bull., 2014(6):14-21. | |
23 | 赵敏华,刘吉,徐晨曦,等.NRT在植物根系发育及非生物胁迫中的功能研究进展[J].上海师范大学学报(自然科学版),2020,49(6):709-718. |
ZHAO M H, LIU J, XU C X, et al.. Progress on functions of NRT in plant root development and abiotic stress response [J]. J. Shanghai Norm. Univ. (Nat. Sci.), 2020,49(6):709-718. | |
24 | WALCH-LIU P, FORDE B G.Nitrate signalling mediated by the NRT1.1 nitrate transporter antagonises L-glutamate-induced changes in root architecture [J]. Plant J., 2008,54(5):820-828. |
25 | FORDE B, LORENZO H.The nutritional control of root development [J]. Plant Soil, 2001,232(1):51-68. |
26 | FORDE B G, WALCH-LIU P.Nitrate and glutamate as environmental cues for behavioural responses in plant roots [J]. Plant Cell Environ., 2009,32(6):682-693. |
27 | ZHANG H, JENNINGS A, BARLOW P W,et al.. Dual pathways for regulation of root branching by nitrate [J]. Proc. Natl. Acad. Sci. USA, 1999,96(11):6529-6534. |
28 | 汪晓丽,陶玥玥,盛海君,等.硝态氮供应对小麦根系形态发育和氮吸收动力学的影响[J].麦类作物学报,2010,30(1):129-134. |
WANG X L, TAO Y Y, SHENG H J,et al..Effects of nitrate supply on morphology development and nitrate uptake kinetics of wheat roots [J]. J. Triticeae Crops, 2010,30(1):129-134. | |
29 | 刘巧真,陈廷贵,闫小毛,等.‘豫烟9号’和‘中烟100’苗期生物学特性及氮代谢差异研究[J].中国农学通报,2017,33(5):35-39. |
LIU Q Z, CHEN T G, YAN X M, et al.. Differences of biological characteristics and nitrogen metabolism between ‘Yuyan 9’ and ‘Zhongyan 100’ flue-cured tobacco in seedling stage [J]. Chin. Agric. Sci. Bull., 2017,33(5):35-39. | |
30 | 冯万军,邢国芳,牛旭龙,等.植物谷氨酰胺合成酶研究进展及其应用前景[J].生物工程学报,2015,31(9):1301-1312. |
FENG W J, XING G F, NIU X L, et al.. Progress and application prospects of glutamine synthase in plants [J]. Chin. J.Biotechnol., 2015,31(9):1301-1312. | |
31 | 武云杰,李飞,杨铁钊,等.氮素营养水平对衰老期烟叶氮代谢的影响及品种间差异[J].中国烟草学报,2014,20(4):41-47. |
WU Y J, LI F, YANG T Z, et al.. Effect of nitrogen nutrition on nitrogen metabolism in ageing tobacco leaf and variation between varieties [J]. Acta Tab. Sin., 2014,20(4):41-47. | |
32 | 刘化冰,杨铁钊,张小全,等.不同耐氮肥烤烟品种质外体NH 4 + 浓度差异和有关生理指标分析[J].中国农业科学,2010,43(14):3036-3043. |
LIU H B, YANG T Z, ZHANG X Q,et al..Difference of apoplastic NH 4 + concentration in flue-cured tobacco varieties with different tolerance to nitrogen nutrition and assay of the related physiological parameters [J]. Sci. Agric. Sin., 2010,43(14):3036-3043. | |
33 | VAN DER WERF A, NAGEL O W.Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion [J]. Plant Soil, 1996,185(1):21-32. |
34 | REYNOLDS H L, D’ANTONIO C.The ecological significance of plasticity in root weight ratio in response to nitrogen:opinion [J]. Plant Soil, 1996,185(1):75-97. |
35 | 黄树永,陈良存.烟草碳氮代谢研究进展[J].河南农业科学,2005(4):8-11. |
HUANG S Y, CHEN L C.Research advance on carbon and nitrogen metabolism in tobacco [J]. J. Henan Agric. Sci., 2005(4):8-11. | |
36 | 李隆云,廖光平,张艳.药用红花生育期间可溶性糖和可溶性氨基酸含量动态的研究[J].中国中药杂志,1994(6):334-336. |
LI L Y, LIAO G P, ZHANG Y. Studies on contents of free amino acids and wateter-soluble carrbohydrates in safflower plant at differentt stages of of growth [J]. China J. Chin. Mater. Med., 1994(6):334-336. | |
37 | 杨铁钊,林彩丽,丁永乐,等.不同基因型烟草对氮素营养响应的差异研究[J].烟草科技,2001,34(6):32-35. |
YANG T Z, LIN C L, DING Y L,et al..Study on response of different tobacco genotypes to nitrogen nutrition [J]. Tob. Sci.Technol., 2001,34(6):32-35. |
[1] | Xixin ZHOU, Shilin YUAN, Liu YANG, Tao XIA, Yi ZHANG, Wei FAN. Identification of Continuous Cropping Tobacco Root Exudates and Screening of Potential Allelopathic Substances [J]. Journal of Agricultural Science and Technology, 2024, 26(7): 136-146. |
[2] | Yue HUANG, Yanfen XIE, Xuanquan ZHU, Meng JIA, Ge WANG, Yuxiang BAI, Yu DU, Peng ZHOU, Yuting ZHAO, Hongqiong ZHU, Fan YANG, Zhiwen XIAO, Wenbo WANG, Zhipeng FANG, Jiabao HAN, Na WANG. Risk Assessment and Influencing Factors Analysis of Chlorine Content in Tobacco Leaves in Tobacco Planting Areas [J]. Journal of Agricultural Science and Technology, 2024, 26(6): 206-213. |
[3] | Yahong ZHAO, Qianyu HU, Rong XIA, Zhijiang WANG, Yonghui XIE, Xianwen YE, Lei YU, Ying QI, Shaowu YANG, Zhiqin XUE, Zhixing WU, Feiyan HUANG, Tianhua HAN. Effects of Biochar Fertilizer on Rhizosphere Flora and Physicochemical Properties of Flue-cured Tobacco Susceptible to Root Knot Nematode [J]. Journal of Agricultural Science and Technology, 2024, 26(4): 206-214. |
[4] | Xudong ZHOU, Tianhua HAN, Yunxin SHEN, Zhufeng SHI, Biao HE, Mingying YANG, Weihua PEI, Yonghong HE, Peiwen YANG. Response Characteristics of Soil Microecology in Long-term Continuous Cropping Tobacco Field Under 4 Rotation Patterns [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 174-187. |
[5] | Liangwei YAO, Yuzhu SHA, Xinyu GUO, Xiaoning PU, Ying XU, Jiqing WANG, Shaobin LI, Zhiyun HAO, Xiu LIU. Analysis of Meat Quality, Nutritional Components and Expression Characteristics of Meat Quality-related Genes in Tibetan Sheep at Different Altitudes [J]. Journal of Agricultural Science and Technology, 2024, 26(3): 66-75. |
[6] | Fengfeng LIU, Ming WU, Yinghui ZHOU, Yong WU, Jiashu TIAN, Jiayang XU, Zicheng XU, Jiewang HE. Effects of Combined Application of Auxin and Molybdenum on Physiological Metabolism and Quality of Upper Leaves of Flue-cured Tobacco [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 208-215. |
[7] | Hao GUO, Ronglei TAN, Jinpeng YANG, Jun YU, Wenchang HUANG, Jiuhong YANG, Baoming QIAO, Ruiwei YANG, Fangsen XU, Chunlei YANG, Guangda DING. Effects of Shading Cultivation on Leaf Uniformity of Cigar-wrapper Tobacco (Nicotiana tabacum) [J]. Journal of Agricultural Science and Technology, 2024, 26(2): 216-225. |
[8] | Junjia CHANG, Jiaxin GAI, Gang TAO, Zhuanlonghai MO. Evaluation of the Growth-promoting Effect of Trichoderma harzianum on Tobacco and Its Induced Resistance to Black Shank Disease [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 168-176. |
[9] | Hongbin ZHENG, Cong WANG, Qiliang XI, Zhongwen ZHANG, Weimin WANG, Xin WANG, Jin GUO, Huanhuan HE, Weilong LU, Zicheng XU, Wenchao WANG, Wei JIA. Impact of Nitrogen Application Rate on Metabolism and Quality of Upper Leaves of Yunyan 121 [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 215-225. |
[10] | Caihong ZHANG, Li ZHANG, Weimin WANG, Jiongping ZHAO, Dan HAN, Zicheng XU, Zhongwen ZHANG, Huifang SHAO. Difference Analysis of Different Maturity of Upper Tobacco Leaves Based on Non-targeted Metabolomics [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 58-70. |
[11] | Tianjun TANG, Yang CHEN, Jun HU, Haotian JIANG. Research on Tobacco Precise Recognition Method Based on UAV Image Data [J]. Journal of Agricultural Science and Technology, 2024, 26(10): 145-157. |
[12] | Zheng QIAN, Sunzhe YANG, Guoqing ZHANG, Ziwei GUO, Linpeng ZHANG, Jiaxing WAN, Hongyun YANG. Rice Nitrogen Nutrition Diagnosis Based on Convolutional Neural Network [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 113-121. |
[13] | Jingjuan GAO, Chenyu ZHU, Yuqin KE, Chaoyuan ZHENG, Chunying LI, Wenqing LI. Effects of Organic Fertilizer Application Period on Carbon and Nitrogen Metabolism in Flue-cured Tobacco Under Tobacco-Rice Rotation [J]. Journal of Agricultural Science and Technology, 2023, 25(9): 157-165. |
[14] | Yongtao HU, Daibin WANG, Yiyin CHEN, Chao YANG, Linlin ZHENG, Hongzhi SHI, Jianan WANG. Research on Contribution of Different Maturation with Fresh Tobacco Quality to Flue-cured Tobacco Quality [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 157-164. |
[15] | Xiaoran WANG, Xiaoyu LI, Hui SUN, Haidong YU, Yongchun SHI. Transcriptome Analysis of Tobacco Leaves Under Boron Stress [J]. Journal of Agricultural Science and Technology, 2023, 25(8): 53-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||